Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(30): e2404778121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39018197

ABSTRACT

Tumor blood vessels are highly leaky in structure and have poor blood perfusion, which hampers infiltration and function of CD8T cells within tumor. Normalizing tumor vessels is thus thought to be important in promoting the flux of immune T cells and enhancing ant-tumor immunity. However, how tumor vasculature is normalized is poorly understood. Metformin (Met) combined with ant-PD-1 therapy is known to stimulate proliferation of and to produce large amounts of IFNγ from tumor-infiltrating CD8T lymphocytes (CD8TILs). We found that the combination therapy promotes the pericyte coverage of tumor vascular endothelial cells (ECs) to improve blood perfusion and that it suppresses the hyperpermeability through the increase of VE-cadherin. Peripheral node addressin(PNAd) and vascular cell adhesion molecule (VCAM)-1, both implicated to promote tumor infiltration of CD8T cells, were also increased. Importantly, tumor vessel normalization, characterized as the reduced 70-kDa dextran leakage and the enhancement of VE-cadherin and VCAM-1, were canceled by anti-CD8 Ab or anti-IFNγ Ab injection to mice. The increased CD8TILs were also abrogated by anti-IFNγ Ab injection. In vascular ECs, flow cytometry analysis revealed that pSTAT1 expression was found to be associated with VE-cadherin expression. Moreover, in vitro treatment with Met and IFNγ enhanced VE-cadherin and VCAM-1 on human umbilical vein endothelial cells (HUVECs). The Kaplan-Meier method revealed a correlation of VE-cadherin or VCAM-1 levels with overall survival in patients treated with immune checkpoint inhibitors. These data indicate that IFNγ-mediated cross talk of CD8TILs with tumor vessels is important for creating a better tumor microenvironment and maintaining sustained antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Metformin , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Animals , Interferon-gamma/metabolism , Mice , Metformin/pharmacology , Metformin/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Vascular Cell Adhesion Molecule-1/metabolism , Mice, Inbred C57BL , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Cadherins/metabolism , Antigens, CD/metabolism , Drug Synergism
2.
Front Immunol ; 13: 864225, 2022.
Article in English | MEDLINE | ID: mdl-35844589

ABSTRACT

Metformin (Met), a first-line drug for type 2 diabetes, lowers blood glucose levels by suppressing gluconeogenesis in the liver, presumably through the liver kinase B1-dependent activation of AMP-activated protein kinase (AMPK) after inhibiting respiratory chain complex I. Met is also implicated as a drug to be repurposed for cancers; its mechanism is believed identical to that of gluconeogenesis inhibition. However, AMPK activation requires high Met concentrations at more than 1 mM, which are unachievable in vivo. The immune-mediated antitumor response might be the case in a low dose Met. Thus, we proposed activating or expanding tumor-infiltrating CD8+ T cells (CD8TILs) in a mouse model by orally administering Met in free drinking water. Here we showed that Met, at around 10 µM and a physiologically relevant concentration, enhanced production of IFNγ,TNFα and expression of CD25 of CD8+ T cells upon TCR stimulation. Under a glucose-rich condition, glycolysis was exclusively involved in enhancing IFNγ production. Under a low-glucose condition, fatty acid oxidation or autophagy-dependent glutaminolysis, or both, was also involved. Moreover, phosphoenolpyruvate carboxykinase 1 (PCK1), converting oxaloacetate to phosphoenolpyruvate, became essential. Importantly, the enhanced IFNγ production was blocked by a mitochondrial ROS scavenger and not by an inhibitor of AMPK. In addition, IFNγ production by CD8TILs relied on pyruvate translocation to the mitochondria and PCK1. Our results revealed a direct effect of Met on IFNγ production of CD8+ T cells that was dependent on differential metabolic pathways and determined by nutrient conditions in the microenvironment.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Neoplasms , AMP-Activated Protein Kinases/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Glucose/metabolism , Metformin/pharmacology , Mice , Nutrients , Phosphoenolpyruvate , Tumor Microenvironment
3.
Int Immunol ; 34(6): 293-302, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35137101

ABSTRACT

Prostaglandin E2 (PGE2), a product of the cyclooxygenase (COX) pathway, is produced by tumors and surrounding stromal cells. It stimulates tumor progression, promotes angiogenesis and suppresses the anti-tumor response. Pharmacological inhibition of PGE2 synthesis has been shown to suppress tumor initiation and growth in vivo. In the current study, we demonstrated that the growth of the Ptgs2-deficient 3LL lung adenocarcinoma cell line was down-regulated in vivo through natural killer (NK) cell activation and a reduction in the population of polymorphonuclear leukocyte-myeloid-derived suppressor cells (PMN-MDSCs) and tumor-associated macrophages (TAMs). On the basis of these results, the therapeutic effect of ONO-AE3-208 (EP4i), an inhibitor of EP4 (a PGE2 receptor), combined with anti-PD-1 antibody was evaluated. EP4i, but not anti-PD-1 antibody, decreased tumor metabolism including glycolysis, fatty acid oxidation and oxidative phosphorylation. EP4i induced IFNγ production from only NK cells (not from T cells) and a shift from M2-like to M1-like macrophages in TAMs. These effects were further enhanced by anti-PD-1 antibody treatment. Although CD8 T-cell infiltration was increased, IFNγ production was not significantly altered, even with combination therapy. Tumor hypoxia was ameliorated by either EP4i or anti-PD-1 antibody treatment, which was further affected by the combination. Normalization of tumor vessels was significant only for the combination therapy. The results indicated a novel effect of EP4i for the metabolic reprogramming of tumors and revealed unique features of EP4i that can synergize with anti-PD-1 antibody to promote IFNγ production by NK cells, polarize TAMs into the M1 phenotype, and reduce hypoxia through normalization of the tumor vasculature.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Dinoprostone/metabolism , Humans , Killer Cells, Natural , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrophages
4.
Cell Rep ; 13(12): 2756-67, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26711342

ABSTRACT

Uncoupling protein 1 (Ucp1) contributes to thermogenesis, and its expression is regulated at the transcriptional level. Here, we show that Ucp1 expression is also regulated post-transcriptionally. In inguinal white adipose tissue (iWAT) of mice fed a high-fat diet (HFD), Ucp1 level decreases concomitantly with increases in Cnot7 and its interacting partner Tob. HFD-fed mice lacking Cnot7 and Tob express elevated levels of Ucp1 mRNA in iWAT and are resistant to diet-induced obesity. Ucp1 mRNA has an elongated poly(A) tail and persists in iWAT of Cnot7(-/-) and/or Tob(-/-) mice on a HFD. Ucp1 3'-UTR-containing mRNA is more stable in cells expressing mutant Tob that is unable to bind Cnot7 than in WT Tob-expressing cells. Tob interacts with BRF1, which binds to an AU-rich element in the Ucp1 3'-UTR. BRF1 knockdown partially restores the stability of Ucp1 3'-UTR-containing mRNA. Thus, the Cnot7-Tob-BRF1 axis inhibits Ucp1 expression and contributes to obesity.


Subject(s)
Ion Channels/genetics , Ion Channels/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Obesity/genetics , Obesity/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adipose Tissue, White/metabolism , Animals , Butyrate Response Factor 1 , Carrier Proteins/genetics , Carrier Proteins/metabolism , Diet, High-Fat , Exoribonucleases , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Stability , Proteins/genetics , Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins , Ribonucleases , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Uncoupling Protein 1
5.
Sci Rep ; 5: 14779, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26437789

ABSTRACT

The CCR4-NOT complex is conserved in eukaryotes and is involved in mRNA metabolism, though its molecular physiological roles remain to be established. We show here that CNOT3-depleted mouse embryonic fibroblasts (MEFs) undergo cell death. Levels of other complex subunits are decreased in CNOT3-depleted MEFs. The death phenotype is rescued by introduction of wild-type (WT), but not mutated CNOT3, and is not suppressed by the pan-caspase inhibitor, zVAD-fluoromethylketone. Gene expression profiling reveals that mRNAs encoding cell death-related proteins, including receptor-interacting protein kinase 1 (RIPK1) and RIPK3, are stabilized in CNOT3-depleted MEFs. Some of these mRNAs bind to CNOT3, and in the absence of CNOT3 their poly(A) tails are elongated. Inhibition of RIPK1-RIPK3 signaling by a short-hairpin RNA or a necroptosis inhibitor, necrostatin-1, confers viability upon CNOT3-depleted MEFs. Therefore, we conclude that CNOT3 targets specific mRNAs to prevent cells from being disposed to necroptotic death.


Subject(s)
Fibroblasts/metabolism , RNA, Messenger/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Caspase Inhibitors/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Embryo, Mammalian , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation , Imidazoles/pharmacology , Indoles/pharmacology , Leupeptins/pharmacology , Mice , Primary Cell Culture , Protein Binding , RNA Stability , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...