Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 109(8): 937-41, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19345501

ABSTRACT

The viscoelastic properties of a large number of mouse fibroblast NIH3T3 cells (n approximately 130) were investigated by combining atomic force microscopy (AFM) with a microarray technique. In the experiments, the cells were arranged and cultured in the wells of a microarray substrate, and a force modulation mode experiment was used to measure the complex shear modulus, G*, of individual cells in a frequency range 0.5-200Hz. The frequency dependence of G* of the cells exhibited a power-law behavior and similar frequency dependencies have been observed in several cell types cultured on flat substrates. This indicated that the NIH3T3 cells cultured in the wells of a microarray have analogous structural organization to those cells cultured on flat substrates. The number distribution of both the storage and loss moduli of G* fitted well to a log-normal distribution function, whereas the power-law exponent estimated by a power-law structural damping model showed a normal distribution function. These results showed that combining AFM with a microarray technique was a suitable approach for investigating the statistics of rheological properties of living cells without the requirement of cell surface modification.


Subject(s)
Elasticity , Fibroblasts/physiology , Microscopy, Atomic Force/methods , 3T3 Cells , Animals , Cell Adhesion , Mice , Stress, Mechanical
2.
Environ Sci Technol ; 42(14): 5310-5, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18754386

ABSTRACT

Fouling in membranes used for water treatment has been attributed to the presence of natural organic matter (NOM) in water. There have been reports recently on the contribution of hydrophilic fractions of NOM (e.g., carbohydrate-like substances) to fouling, but there is still little information about the physicochemical interactions between membranes and carbohydrate-like substances. In this study, the affinity of carbohydrate-like substances to two different microfiltration (MF) membranes was investigated by using atomic force microscopy (AFM) and functionally modified microspheres. Microspheres were attached to the tip of the cantilever in an AFM apparatus and the adhesion forces working between the microspheres and the membranes were determined. The microspheres used in this study were coated with either hydroxyl groups or carboxyl groups to be used as surrogates of carbohydrate-like substances or humic acid, respectively. Measurements of adhesion force were carried out at pH of 6.8 and the experimental results demonstrated that the adhesion force to membranes was strong in the case of hydroxyl groups but weak in the case of carboxyl groups. The strong adhesion between the hydroxyl group and the membrane surface is explained by the strong hydrogen bond generated. It was also found that the affinity of the hydroxyl group to a polyvinylidenefluoride (PVDF) membrane was much higher than that to a polyethylene (PE) membrane, possibly due to the high electronegative nature of the PVDF polymer. The time course of changes in the affinity of hydroxyl group to a membrane used in a practical condition was investigated by repeatedly carrying out AFM force measurements with PE membrane specimens sampled from a pilot plant operated at an existing water treatment plant. Microspheres exhibited strong affinity to the membrane at the initial stage of operation (within 5 days), but subsequently exponential reduction of the affinity was seen until the end of operation, as a result of fouling development. However, the magnitude of affinity of hydroxyl-modified microspheres was much higher than that of carboxyl-modified microspheres even after the significant reduction of affinity of hydroxyl-modified microspheres to the membranes was seen. The results obtained in this study partially explain why hydrophilic NOM dominated over humic substances in foulants of membranes used for water treatment in recent studies on fouling.


Subject(s)
Membranes, Artificial , Organic Chemicals/chemistry , Water Purification , Microscopy, Atomic Force , Microspheres , Polyethylene/chemistry , Polyvinyls/chemistry , Water Purification/instrumentation , Water Purification/methods , Water Supply
3.
J Nanosci Nanotechnol ; 7(3): 790-5, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17450834

ABSTRACT

We conducted the extraction experiments of single polymer incorporated into hydrogels with an atomic force microscope (AFM) as a model for investigating nonspecific intermolecular interactions between macromolecules in a semidilute region at the single molecule level. Small amount of poly(ethylene glycol) (PEG) terminated with a thiol group was inserted in poly(acrylamide) gels, and a part of PEG polymer segments on the gel surface was attempted to pull out of the gels with a gold-coated AFM tip. The observed force-distance curves were classified into two kinds of extraction force profiles: a plateau force, which is almost constant irrespective of the tip-surface distance and a nonlinear force, which nonlinearly increases with the extraction length. Characteristic interaction length, L, and force, F, of these extraction force profiles were measured with changing the crosslinker concentration of gels which strongly affects the network structures. As a result, L of these extraction profiles significantly decreased at crosslinker concentrations higher than a standard one at which most gels have been prepared for investigating their physical properties. On the other hand, F showed no obvious difference on the change in crosslinker concentrations both on the plateau and the nonlinear force profiles. The origin of the observed forces was discussed in terms of gel network structures.


Subject(s)
Polymers , Acrylic Resins , Biomechanical Phenomena , Hydrogels , Macromolecular Substances , Microscopy, Atomic Force , Nanotechnology , Polyethylene Glycols
4.
J Am Chem Soc ; 127(29): 10287-90, 2005 Jul 27.
Article in English | MEDLINE | ID: mdl-16028940

ABSTRACT

In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs highly concentrated to 87% in a simple way.

5.
Ann N Y Acad Sci ; 1006: 164-86, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14976017

ABSTRACT

The electrical conduction of self-assembled monolayers (SAMs) made from conjugated molecules was measured using conductive probe atomic force microscopy (CP-AFM), with a focus on the molecular structural effect on conduction. First, the electrical conduction of SAMs made from phenylene oligomer SAMs was measured. The resistances through the monolayers increased exponentially with an increase in molecular length and the decay constants of transconductance beta were about 0.45 to 0.61 A(-1) measured at lower bias region. We further investigated the influence of applied load on the resistances. The resistances through terphenyl SAMs increased with an increase in the applied load up to 14 nN. Second, using an insertion technique into insulating alkanethiol SAMs, the electrical conduction of single conjugated terphenyl methanethiol and oligo(para-phenylenevinylene) (OPV) molecules embedded into insulating alkanethiol SAMs were measured. Electrical currents through these single molecules of OPVs were estimated to be larger than those through single terphenyl molecules, suggesting that the OPV structure can increase the electrical conduction of single molecules. Third, apparent negative differential resistance (NDR) was observed at higher bias measurements of SAMs. The appearance of NDR might be related to roughness of SAM surface, because apparent NDR was often observed on rough surfaces. In any case, the tip-molecule contact condition strongly affected carrier transport through metal tip/SAM/metal junction.


Subject(s)
Electric Wiring/instrumentation , Equipment Failure Analysis/instrumentation , Equipment Failure Analysis/methods , Microscopy, Atomic Force/instrumentation , Microscopy, Atomic Force/methods , Molecular Probes/chemistry , Nanotechnology/instrumentation , Transducers , Electric Conductivity , Nanotechnology/methods , Surface Properties
6.
J Agric Food Chem ; 50(13): 3637-46, 2002 Jun 19.
Article in English | MEDLINE | ID: mdl-12059137

ABSTRACT

The present work describes the design and synthesis of the structurally unique hapten, "bifunctional hapten", to produce a group-specific polyclonal antiserum to triclopyr and 3,5,6-trichloro-2-pyridinol. A bifunctional hapten was designed and synthesized by conjugating commercially available Nepsilon-2,4-dinitrophenyl (DNP)-L-lysine to triclopyr, and then coupling this to carrier proteins such as bovine serum albumin (BSA). The synthesized bifunctional hapten greatly raised the antiserum titer in comparison with that of the conventional hapten, triclopyr. Antiserum with a sufficiently high titer to provide the determinations of targeted compounds was obtained only 63 days after the primary immunization. The obtained antiserum showed the highest affinity to triclopyr (IC(50) = 3.5 nM) and 3,5,6-trichloro-2-pyridinol (IC(50) = 5.1 nM) in homologous ELISA. The cross-reactivities to various agrochemicals and some chlorinated phenolic compounds were determined. Significant cross-reactivity was found to the herbicide 2,4,5-T. The antiserum reacted to both triclopyr and its metabolite. Assay sensitivity was evaluated for effects of various assay conditions, including pH value and concentrations of organic solvents and detergents. Under optimized assay conditions, the quantitative working range of triclopyr ELISA was from 0.1 to 5.2 ng/mL with a limit of detection (LOD) of 0.037 ng/mL, and an IC(50) of 0.72 ng/mL. On the other hand, the quantitative working range of 3,5,6-trichloro-2-pyridinol ELISA was from 0.13 to 6.0 ng/mL with a LOD of 0.052 ng/mL, and an IC(50) of 0.95 ng/mL. Water samples fortified with triclopyr or its metabolite at 1, 5, and 10 ng/mL were directly analyzed without extraction and cleanup by the proposed ELISA. The mean recovery was 101.6%, and the mean coefficient of variation (CV) was 7.1% in the case of the triclopyr ELISA. In the case of the 3,5,6-trichloro-2-pyridinol ELISA, the mean recovery was 99.8%, and the mean CV was 9.5%. The proposed ELISA turned out to be a powerful tool for monitoring of residual triclopyr or 3,5,6-trichloro-2-pyridinol in water samples at trace level.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Glycolates/analysis , Haptens , Immune Sera , Pyridones/analysis , 2,4-Dinitrophenol/immunology , Agrochemicals/analysis , Antibody Specificity , Detergents , Glycolates/immunology , Haptens/chemistry , Haptens/immunology , Hydrogen-Ion Concentration , Pyridones/immunology , Quality Control , Sensitivity and Specificity , Serum Albumin, Bovine/immunology , Solvents , Water/analysis
7.
J Agric Food Chem ; 50(1): 53-8, 2002 Jan 02.
Article in English | MEDLINE | ID: mdl-11754541

ABSTRACT

For development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for the organophosphorus insecticide fenitrothion, the specificity of the antiserum R-3 generated with the bifunctional hapten, LysMNPA (2-[[[(3-methyl-4-nitrophenyl)oxy]methylcarbonyl]amino]-6-(2,4-dinitrophenyl)aminohexanoic acid) and the application to the residual analysis of some water samples were evaluated. At optimized ELISA conditions, the quantitative working range was from 1 to 39 ng/mL with a limit of detection of 0.3 ng/mL and an IC(50) value of 6 ng/mL. Cross-reactivity to structurally similar organophosphorus compounds and related chemicals was determined. The antiserum R-3 showed significant cross-reactivity with fenitrooxon and 3-methyl-4-nitrophenol, which have a 3-methyl-4-nitrophenoxy group as common structures, but showed relatively low cross-reactivity with other compounds. Each water sample (river water, tap water, purified water, and bottled water) had a matrix effect and was investigated by adding Tween 20 in the assay buffer. These four kinds of water samples were fortified with fenitrothion at several concentration levels and were directly analyzed with only dilution with an equal volume of antiserum solution. The mean recovery was 105.9%, and the mean coefficient of variation was 10.9%. The results suggested that the developed ELISA would be very suitable for a preliminary screening for fenitrothion in water samples at such low levels.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Fenitrothion/analysis , Insecticides/analysis , Cross Reactions , Pesticide Residues/analysis , Reproducibility of Results , Sensitivity and Specificity , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...