Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35407767

ABSTRACT

Polymer-infiltrated ceramic network materials (PICNs) have high mechanical compatibility with human enamel. However, the wear properties of PICN against natural human enamel have not yet been clarified. We investigated the in vitro two-body wear behaviors of PICNs and an enamel antagonist. Two PICNs were used: Experimental PICN (EXP) prepared via the infiltration of methacrylate-based resin into the porous silica ceramic network and commercial Vita Enamic (ENA). Two commercial dental ceramics, lithium disilicate glass (LDS) and zirconia (ZIR), were also characterized, and their wear performance was compared to PICNs. The samples were subjected to Vickers hardness tests and two-body wear tests that involve the samples being cyclically impacted by enamel antagonists underwater at 37 °C. The results reveal that the Vickers hardness of EXP (301 ± 36) was closest to that of enamel (317 ± 17). The volumetric wear losses of EXP and ENA were similar to those of LDS but higher than that of zirconia. The volumetric wear loss of the enamel antagonist impacted against EXP was moderate among the examined samples. These results suggest that EXP has wear behavior similar to that of enamel. Therefore, PICNs are mechanically comparable to enamel in terms of hardness and wear and are excellent tooth-restoration materials.

2.
Dent Mater J ; 41(4): 520-526, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35264545

ABSTRACT

This study aimed to develop a novel polymer-infiltrated ceramic network (PICN) composite fabricated via a slip-casting method for a dental training model tooth with machinability compatible to human enamel. A PICN model tooth comprised of silica/acrylic-resin was fabricated via the slip-casting method. A commercial resin-based model tooth and human enamel were used as the control sample. The samples were evaluated based on Vickers hardness, inorganic contents, density, and machinability. The machinability was characterized by a grinding amount obtained from the grinding test using a device equipped with a dental micromotor handpiece with a diamond bur. The properties of the PICN model tooth yielded a silica content of 84.7% and a density of 1.99 g/cm3, and its Vickers hardness (312) was comparable with that of enamel (348). The grinding amount was comparable with that of enamel. The castable PICN model tooth was compatible to enamel in terms of hardness and machinability.


Subject(s)
Ceramics , Polymers , Composite Resins , Dental Enamel , Hardness , Humans , Materials Testing , Silicon Dioxide , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...