Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
2.
Appl Microbiol Biotechnol ; 107(22): 6799-6809, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37725141

ABSTRACT

To realize biomass refinery without complex downstream processes, we extensively screened for microbial strains that efficiently produce extracellular oil from sugars. Rhodotorula paludigena (formerly Rhodosporidium paludigenum) BS15 was found to efficiently produce polyol esters of fatty acids (PEFAs), which mainly comprised of 3-acetoxypalmitic acid and partially acetylated mannitol/arabinitol. To evaluate the performance of this strain, fed-batch fermentation was demonstrated on a flask scale, and 110 g/L PEFA and 103 g/L dry cells were produced in 12 days. To the best of our knowledge, the strain BS15 exhibited the highest PEFA titer (g/L) ever to be reported so far. Because the PEFA precipitated at the bottom of the culture broth, it could be easily recovered by simply discarding the upper phase. Various carbon sources can be utilized for cell growth and/or PEFA production, which signifies the potential for converting diverse biomass sources. Two different types of next-generation sequencers, Illumina HiSeq and Oxford Nanopore PromethION, were used to analyze the whole-genome sequence of the strain BS15. The integrative data analysis generated a high-quality and reliable reference genome for PEFA-producing R. paludigena. The 22.5-M base genome sequence and the estimated genes were registered in Genbank (accession numbers BQKY01000001-BQKY01000019). KEY POINTS: • R. paludigena BS15 was isolated after an extensive screening of extracellular oil producers from natural sources. • Fed-batch fermentation of R. paludigena BS15 yielded 110 g/L of PEFA, which is the highest titer ever reported to date. • Combined analysis using Illumina and Oxford Nanopore sequencers produced the near-complete genome sequence.

3.
J Appl Glycosci (1999) ; 69(4): 73-81, 2022.
Article in English | MEDLINE | ID: mdl-36531691

ABSTRACT

This study aimed to characterize the interactions between cereal flour (rice, wheat, and barley) and "nata puree" (NP), a disintegrated bacterial cellulose (BC) in the presence of a water-soluble polysaccharide, with powder-dispersion activity. Pasting properties of cereal flour with additives were analyzed using a Rapid Visco Analyzer, and disintegrated BC in water (BCW), three water-soluble polysaccharides: (1,3)(1,4)-ß-glucan, tamarind seed gum, and birchwood xylan, and the corresponding NPs were used as additives. For rice flour, additional BCW or NPs increased the initial and the peak viscosity. The addition of water-soluble polysaccharides produced the opposite trend: viscosity increased from the peak time to the end of measurements. For wheat flour, the addition of BCW or NP delayed the peak time and increased peak viscosity; the increase was maintained till the end of measurements. For barley flour, the additional BCW or NP caused a higher gelatinization rate and increased viscosity at the starch-retrogradation stage. Next, static gelatinization of a rice flour suspension in NP was successfully accomplished before placing it in a vessel; NP concentration in the gel significantly affected the firmness. Thus, the dynamic and unique interactions between various cereal flours and cell-wall polysaccharides in NPs can increase the flours' potential; static gelatinization of cereal flour with NP could expand flours' application range in both current and next-generation cooking.

4.
J Appl Glycosci (1999) ; 69(4): 91-95, 2022.
Article in English | MEDLINE | ID: mdl-36531692

ABSTRACT

Cabbage core (CC) is regarded as a waste part of the vegetable, despite being edible and containing various nutritional and functional compounds. We investigated the properties of CC powder with particle sizes < 1 mm as a new food material. CC powder was more resistant to structural deformation than leaf-derived powder, particularly CC powder with particles ≥ 0.3 mm in size. To examine the application of CC powder in 3D printed foods, we investigated the effects of "nata puree," a disintegrated nata de coco made with tamarind seed gum (NPTG), on paste made with CC powder. NPTG promoted stable binding of paste made using CC powder, which was successfully extruded using a syringe to form a bar with a granular structure. Thus, CC powder possesses unique textural/structural properties for its application in next-generation foods.

5.
J Appl Glycosci (1999) ; 68(4): 77-87, 2021.
Article in English | MEDLINE | ID: mdl-34853549

ABSTRACT

Pulverization is a potentially powerful solution for the resource management of surplus- and non-standard agricultural products, maintaining their nutritional values for long and ensuring their homogeneity, whereas their original textures could disappear to narrow the application ranges. Therefore, new technologies should be developed for reconstructing the powders to provide them with new physical characteristics. Herein, we developed a novel food material, nata puree (NP), by nata de coco (bacterial cellulose gel) disintegration with a water-soluble polysaccharide using a household blender. The process worked well with (1,3)(1,4)-ß-glucan (BGL) as the polysaccharide, which could be substituted with barley extract. Lichenase treatment of the NP dramatically modified its physical properties, suggesting the importance of the BGL polymeric forms. NP exhibited distinct potato powder and starch binding activities, which would be attributed to its interactions with the cell wall components and a physical capture of powders by the NP network, respectively. NP supplementation into the potato paste improved its firmness and enabled its printable range shift for 3D food printing to a lower powder-concentration. NP also promoted the dispersion of powders in its suspension, and designed gelation could also be successfully performed by the laser irradiation of an NP suspension containing dispersed curdlan and turmeric powders. Therefore, NP could be applied as a powder modifier to a wide range of products in both conventional cooking, food manufacturing, and next generation processes such as 3D food printing.

6.
J Appl Glycosci (1999) ; 68(3): 63-67, 2021.
Article in English | MEDLINE | ID: mdl-34759770

ABSTRACT

Erianthus arundinaceus (ER) is greatly appreciated among domestic energy crops in Japan for the production of fermentable sugars from lignocellulosic polysaccharides. In this study, we developed an efficient Ca(OH)2-based pretreatment of both stems and leaves of ER at ambient temperature with the addition of a washing step for enzymatic saccharification. The recoveries of glucans and xylans in the pretreated ER after four countercurrent washing cycles were 91 and 76 %, respectively, the former being considerably higher than that of rice straw (RS) (72 %). Their saccharification ratios in the washed sample under the pressure of 1 atm CO2 were 80 and 92.5 %, respectively. The application of this simple sugar production process from ER would further support the domestic bioprocess development. ER is also foreseen to provide the additional feedstock favorable for harvesting from winter to spring in Japan, preventing a risk for feedstock shortage generated by single harvesting such as RS.

7.
Bioresour Technol Rep ; 12: 100574, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33052323

ABSTRACT

Rice straw (RS), an agricultural resource for lignocellulosic biorefineries, can deteriorate when sun-drying is ineffective. Poultry litter ash (PLA) has been considered as a renewable phosphorus source for crops but is highly alkaline. Here, a simple process was developed for their reciprocal upgrading. RS, PLA, and water were mixed for wet storage and alkali pretreatment of the RS at 25 °C for 14 d, and solid-solid separation was performed to obtain PLA-treated RS (PT-RS) and RS-treated PLA (RT-PLA). PT-RS was susceptible to enzymatic saccharification, and 65.5-68.6% of total sugar residues in PT-RS was converted to lactic acid by its nonsterile application for simultaneous saccharification and fermentation using Bacillus coagulans. RT-PLA exhibited 1.8-points lower pH and a more sensitive response of phosphorus solubilization to acid than those of PLA. This process could thus provide a breakthrough for the rural bioeconomy by manufacturing two strategic primary products for various commercial bioproducts.

8.
J Appl Glycosci (1999) ; 67(2): 59-62, 2020.
Article in English | MEDLINE | ID: mdl-34354529

ABSTRACT

The aim of this study was to investigate the effect of pH control by CO 2 pressurization on the enzymatic hydrolysis of herbaceous feedstock in the calcium capturing by carbonation (CaCCO) process for fermentable sugar production. The pH of the slurry of 5 % (w/w) Ca(OH) 2 -pretreated/CO 2 -neutralized rice straw could be controlled between 5.70 and 6.38 at 50 °C by changing the CO 2 partial pressure ( p CO 2 ) from 0.1 to 1.0 MPa. A mixture of fungal enzyme preparations, namely, Trichoderma reesei cellulases/hemicellulases and Aspergillus niger ß-glucosidase, indicated that pH 5.5-6.0 is optimal for solubilizing sugars from Ca(OH) 2 -pretreated rice straw. Enzymatic saccharification of pretreated rice straw under various p CO 2 conditions revealed that the highest soluble sugar yields were obtained at p CO 2 0.4 MPa and over, which is consistent with the expected pH at the p CO 2 without enzymes and demonstrates the effectiveness of pH control by CO 2 pressurization.

9.
Food Sci Nutr ; 7(2): 721-729, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847150

ABSTRACT

The objective of this study was to investigate the effects of rice variety, water content, and preparation temperature on the textural properties of gels processed from cooked rice grains via high-speed shear homogenization. Rice gels were prepared from seven high-amylose rice varieties. The results demonstrated the significant differences in rice gel hardness and hardening rates during storage based on the rice variety used. The proportion of short chains of amylopectin was negatively correlated with the hardness of the rice gel. The sample temperature before shear treatment also influenced the rice gel hardness. Rice gels prepared from cooked rice maintained at 75°C prior to homogenization showed a higher breaking force than those from cooked rice at 25°C. Observation using scanning electron microscopy demonstrated the tendency of the cooked rice sample maintained at 75°C to form a finer gel network after homogenization than those at 25°C from the same rice variety.

10.
J Appl Glycosci (1999) ; 66(1): 11-19, 2019.
Article in English | MEDLINE | ID: mdl-34354515

ABSTRACT

Generally, Ca(OH)2 pretreatment of lignocellulosics for fermentable sugar recovery requires a subsequent washing step for calcium removal and pH control for optimized saccharification. However, washing Ca(OH)2-pretreated feedstock with water is considered problematic because of the low solubility of Ca(OH)2 and its adsorption to biomass. In this study, we estimated the availability of carbonated water for calcium removal from the slurry of Ca(OH)2-pretreated rice straw (RS). We tested two kinds of countercurrent washing sequences, four washings exclusively with water (W4) and two washings with water and subsequent two washings with carbonated water (W2C2). The ratios of calcium removal from pretreatment slurry after washing were 64.2 % for the W4 process and 92.1 % for the W2C2 process. In the W2C2 process, 49 % of the initially added calcium was recovered as CaO by calcination. In enzymatic saccharification tests under a CO2 atmosphere at 1.5 atm, in terms of recovery of both glucose and xylose, pretreated, feedstock washed through the W2C2 process surpassed that washed through the W4 process, which could be attributed to the pH difference during saccharification: 5.6 in the W2C2 process versus 6.3 in the W4 process. Additionally, under an unpressurized CO2 atmosphere at 1 atm, the feedstock washed through the W2C2 process released 78.5 % of total glucose residues and 90.0 % of total xylose residues. Thus, efficient removal of calcium from pretreatment slurry would lead to not only the recovery of added calcium but also the proposal of a new, simple saccharification system to be used under an unpressurized CO2 atmosphere condition.

11.
J Appl Glycosci (1999) ; 66(1): 21-28, 2019.
Article in English | MEDLINE | ID: mdl-34354516

ABSTRACT

Novel bioreactor beads for simultaneous saccharification and fermentation (SSF) of lime-pretreated rice straw (RS) into ethanol were prepared. Genetically modified Saccharomyces cerevisiae cells expressing genes encoding xylose reductase, xylitol dehydrogenase, and xylulokinase were immobilized in calcium alginate beads containing inorganic lightweight filler particles to reduce specific gravity. For SSF experiments, the beads were floated in slurry composed of lime-pretreated RS and enzymes and incubated under CO2 atmosphere to reduce the pH for saccharification and fermentation. Following this reaction, beads were readily picked up from the upper part of the slurry and were directly transferred to the next vessel with slurry. After 240 h of incubation, ethanol production by the beads was equivalent to that by free cells, a trend that was repeated in nine additional runs, with slightly improved ethanol yields. Slurry with pre-saccharified lime-pretreated RS was subjected to SSF with floating beads for 168 h. Although higher cell concentrations in beads resulted in more rapid initial ethanol production rates, with negligible diauxic behavior for glucose and xylose utilization, no improvement in the ethanol yield was observed. A fermentor-scale SSF experiment with floating beads was successfully performed twice, with repeated use of the beads, resulting in the production of 40.0 and 39.7 g/L ethanol. There was no decomposition of the beads during agitation at 60 rpm. Thus, this bioreactor enables reuse of yeast cells for efficient ethanol production by SSF of lignocellulosic feedstock, without the need for instruments for centrifugation or filtration of whole slurry.

12.
J Appl Glycosci (1999) ; 66(3): 97-102, 2019.
Article in English | MEDLINE | ID: mdl-34429687

ABSTRACT

Ethanol precipitation process for purification of branched dextrin (BD) in Nägeli amylodextrin from waxy rice starch was developed. Temperature and ethanol concentration for precipitation were main parameters affecting the recovery and purity of BD, and the purification condition at 4 °C and 10 % (v/v) ethanol in water was adopted. After four-time precipitation, the BD recovery was 34.6 %, whereas the purity improved from 78.5 % at the initial to 94.5 % at the four-time purified BD (BD4). BD4 mainly showed a chain length distribution between 18 to 35 with a mode length of 25, which shifted after enzymatic debranching with isoamylase to that between 9 and 20 with a mode length of 14. Each purified BD was solubilized in water, and each solution was mixed with methanol-water at 25 °C to a final methanol concentration of 16 M. The flakes of BD precipitated with 16 M methanol exhibited an A-type crystal structure by an X-ray diffraction analysis, and the speed generation of white flakes in 16 M methanol dramatically increased as the purification time increased. The effect of addition of highly branched cyclic dextrin (HBCD) or sodium tetraborate on BD aggregation in 16 M methanol was also investigated, where the former retarded aggregation but the latter had no effect on the velocity. Thus, the purified BD enables rapid characterization of aggregation of double helix structures of A-type crystal structure, and screening of compounds which could affect the phenomena for prediction of potentials in starch modification as well.

13.
J Appl Glycosci (1999) ; 66(4): 113-119, 2019.
Article in English | MEDLINE | ID: mdl-34429689

ABSTRACT

Rice-gel prepared by the following three steps: rice grain cooking, shearing of the cooked rice, and cooling for gel formation, is expected as a novel food ingredient for modification of various food products such as bread and noodles. To meet the demand for high-throughput systems for research and developments on the new rice gels, herein we established a mini-cooking system for preparation of rice gel samples from grains using a small-scale viscosity analyzer (Rapid Visco Analyzer; RVA). Polished rice grains (4 g) were cooked with 22 mL of water in a canister, and the paddle equipped in the canister was rotated at 2,000 rpm for 30 min (80 °C was used as a representative) to shear the cooked rice. The sheared paste was cooled to 10 °C at 160 rpm, and the initial gelation property was evaluated by viscosity analysis within the RVA. Alternatively, the sheared paste was transferred to an acrylic mold and kept at 4 °C for 0, 1, 3, and 5 days for determination of the hardness with a compression test. Compressive forces required to penetrate 20 % thickness for three tested rice cultivars were measured, and the trend of the value shifts during preservation is similar to the corresponding trend obtained in 300-g grain scale laboratory tests, whereas the individual values were halved in the former. This small cooking method could offer a useful assay system for a rapid evaluation in the breeding programs and in the high-throughput screening of additives for the modification of properties.

14.
J Appl Glycosci (1999) ; 65(4): 51-56, 2018.
Article in English | MEDLINE | ID: mdl-34354513

ABSTRACT

To expand the range of soluble carbon sources for our enzyme production system, we investigated the properties of sucrose utilization and its effect on cellulase production by Trichoderma reesei M2-1. We performed batch cultivation of T. reesei M2-1 on sucrose and related sugars along with cellobiose, which was used as a cellulase inducer. The results clearly revealed that the hydrolysis products of sucrose, i.e. glucose and fructose, but not sucrose, can be used as a carbon source for enzyme production. In a 10-day continuous feeding experiment using invertase-treated sucrose/cellobiose, the fungal strain produced cellulases with a filter paper-degrading activity of 20.3 U/mL and production efficiency of 254 U/g-carbon sources. These values were comparable with those of glucose/cellobiose feeding (21.2 U/mL and 265 U/g-carbon sources, respectively). Furthermore, the comparison of the specific activities clearly indicated that the compositions of both produced enzymes were similar. Therefore, enzymatically hydrolyzed sucrose can be utilized as an alternative carbon source to glucose in our enzyme production system with T. reesei M2-1.

15.
J Appl Glycosci (1999) ; 63(3): 77-85, 2016.
Article in English | MEDLINE | ID: mdl-34354486

ABSTRACT

Sorghum bagasse samples from two sets (n6 and bmr6; n18 and bmr18) of wild-type and corresponding "brown midrib" (bmr) mutant strains of sweet sorghum were evaluated as the feedstock for fermentable sugar recovery via the calcium capturing by carbonation (CaCCO) process, which involves Ca(OH)2 pretreatment of bagasse with subsequent neutralization with CO2 for enzymatic saccharification. Saccharification tests under various pretreatment conditions of the CaCCO process at different Ca(OH)2 concentrations, temperatures or residence periods indicated that bmr strains are more sensitive to the pretreatment than their counterparts are. It is expected that variant bmr6 is more suitable for glucose recovery than its wild-type counterpart because of the higher glucan content and better glucose recovery with less severe pretreatment. Meanwhile, bmr18showed higher scores of glucose recovery than its counterpart did, only at low pretreatment severity, and did not yield higher sugar recovery under the more severe conditions. The trend was similar to that of xylose recovery data from the two bmr strains. The advantages of bmr strains were also proven by means of simultaneous saccharification and fermentation of CaCCO-pretreated bagasse samples by pentose-fermenting yeast strain Candida shehatae Cs 4R. The amounts needed for production of 1 L of ethanol from n6, bmr6, n18, and bmr18samples were estimated as 4.11, 3.46, 4.03, and 3.95 kg, respectively. The bmr strains seem to have excellent compatibility with the CaCCO process for ethanol production, and it is expected that integrated research from the feedstock to bioprocess may result in breakthroughs for commercialization.

16.
Bioresour Technol ; 172: 413-417, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25241674

ABSTRACT

Rice-straw hydrolysate (RSH) prepared via the CaCCO (Calcium Capturing by Carbonation) process contains not only monosaccharides but also significant amounts of oligosaccharides. In this study, a glutathione-producing yeast, Candida utilis NBRC 0626, was found to assimilate those oligosaccharides. The yields of reduced glutathione (GSH) and dry cell weight (DCW) per consumed sugars in a medium with RSH after 72h incubation were 10.1mg/g-sugars and 0.49g/g-sugars, respectively. The yields were comparative to those in a medium containing a model monosaccharide mix, suggesting that the assimilated oligosaccharides contribute to additional GSH and DCW production. Glycosyl linkage analysis indicated that the yeast could cleave xylose-, galactose-, and arabinose residues as well as glucose residues at the non-reducing ends. After 72h incubation, 99.1% of the total glucose residues and 84.2% of the total xylose residues in RSH were depleted. Thus the yeast could be applied for efficient utilization of lignocellulosic hydrolysates.


Subject(s)
Calcium/chemistry , Candida/physiology , Glucose/metabolism , Glutathione/biosynthesis , Oryza/microbiology , Plant Components, Aerial/microbiology , Xylose/metabolism , Candida/classification , Candida/cytology , Cell Proliferation/physiology , Glutathione/isolation & purification , Hydrolysis , Oryza/chemistry , Plant Components, Aerial/chemistry , Species Specificity
17.
Proc Natl Acad Sci U S A ; 111(3): E404-13, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24395781

ABSTRACT

Perception of microbe-associated molecular patterns (MAMPs) through pattern recognition receptors (PRRs) triggers various defense responses in plants. This MAMP-triggered immunity plays a major role in the plant resistance against various pathogens. To clarify the molecular basis of the specific recognition of chitin oligosaccharides by the rice PRR, CEBiP (chitin-elicitor binding protein), as well as the formation and activation of the receptor complex, biochemical, NMR spectroscopic, and computational studies were performed. Deletion and domain-swapping experiments showed that the central lysine motif in the ectodomain of CEBiP is essential for the binding of chitin oligosaccharides. Epitope mapping by NMR spectroscopy indicated the preferential binding of longer-chain chitin oligosaccharides, such as heptamer-octamer, to CEBiP, and also the importance of N-acetyl groups for the binding. Molecular modeling/docking studies clarified the molecular interaction between CEBiP and chitin oligosaccharides and indicated the importance of Ile122 in the central lysine motif region for ligand binding, a notion supported by site-directed mutagenesis. Based on these results, it was indicated that two CEBiP molecules simultaneously bind to one chitin oligosaccharide from the opposite side, resulting in the dimerization of CEBiP. The model was further supported by the observations that the addition of (GlcNAc)8 induced dimerization of the ectodomain of CEBiP in vitro, and the dimerization and (GlcNAc)8-induced reactive oxygen generation were also inhibited by a unique oligosaccharide, (GlcNß1,4GlcNAc)4, which is supposed to have N-acetyl groups only on one side of the molecule. Based on these observations, we proposed a hypothetical model for the ligand-induced activation of a receptor complex, involving both CEBiP and Oryza sativa chitin-elicitor receptor kinase-1.


Subject(s)
Chitin/chemistry , Oryza/immunology , Plant Immunity , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Epitopes/immunology , Ligands , Lysine/chemistry , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutagenesis, Site-Directed , Oligosaccharides/chemistry , Oryza/metabolism , Protein Multimerization , Protein Structure, Tertiary , Reactive Oxygen Species/metabolism , Sequence Homology, Amino Acid , Nicotiana
18.
Bioresour Technol ; 148: 422-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24077151

ABSTRACT

An advanced sugar-platform bioprocess for lignocellulosic feedstocks by adding a phenolic-acid (PA: p-coumaric acid and ferulic acid) recovery step to the CaCCO process was designed. For efficient PA extraction, pretreatment was 95°C for 2h, producing a yield of 7.30 g/kg-dry rice straw (65.2% of total ester-linked PAs) with insignificant effects on saccharification. PAs were readily recovered in solution during the repeated washings of solids, and the glucose yield, after 72-h saccharification of the washed solids, was significantly improved from 65.9% to 70.3-72.7%, suggesting the removal of potential enzyme inhibitors. The promotion of xylose yield was insignificant, probably due to 13.1-17.8% loss of xylose residues after washing(s). This new bioprocess, termed the SRB (simultaneous recovery of by-products)-CaCCO process, would effectively produce fermentable sugars and other valuables from feedstocks, strengthening the platform in both economic and environmental terms.


Subject(s)
Biotechnology/methods , Calcium/chemistry , Carbohydrates/analysis , Carbon/chemistry , Fermentation , Hydroxybenzoates/analysis , Oryza/chemistry , Waste Products , Calcium Compounds/chemistry , Coumaric Acids/analysis , Glucose/analysis , Oxides/chemistry , Propionates , Temperature , Xylose/analysis
19.
J Biosci Bioeng ; 116(3): 362-5, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23597919

ABSTRACT

We successfully expressed the neutral ß-glucosidase (BGL4) from Scytalidium thermophilum in the thermotolerant yeast Candida glabrata. Compared to the strain expressing Aspergillus acidic ß-glucosidase (BGL1), the BGL4-expressing strain showed a higher cellobiose fermentation ability at pH 6.0 and 40°C, leading to a higher ethanol production from alkaline-pretreated rice straw.


Subject(s)
Ascomycota/enzymology , Candida glabrata/genetics , Candida glabrata/metabolism , Cellobiose/metabolism , Ethanol/metabolism , Oryza , beta-Glucosidase/metabolism , Ascomycota/genetics , Aspergillus/enzymology , Fermentation , Hydrogen-Ion Concentration , Mitosporic Fungi/enzymology , Mitosporic Fungi/genetics , Temperature , beta-Glucosidase/genetics
20.
Biosci Biotechnol Biochem ; 77(1): 161-6, 2013.
Article in English | MEDLINE | ID: mdl-23291768

ABSTRACT

The objective of this study was to develop an efficient production system for cellulase preparation with a high level of xylanolytic enzymes using soluble carbon sources. When xylose and arabinose were simultaneously fed with glucose and cellobiose, a mutant of Trichoderma reesei, M3-1, showed sufficient levels of cellulolytic and xylanolytic activities, indicating that xylose and arabinose are good inducers for the production of xylanolytic enzymes. In a continuous feeding experiment using glucose/cellobiose and glucose/xylose/cellobiose, cellulase preparations with various levels of xylanolytic enzymes were obtained by altering the feeding solutions and the timing of their addition. The volumetric production rates for xylanolytic activities at the glucose/xylose/cellobiose-feeding phase were significantly higher than at the glucose/cellobiose-feeding phase, while those for cellulolytic activities were comparable under the two conditions. Thus the composition of the enzyme preparation produced by the mutant was readily controlled by varying the inducers and the pattern of their addition, facilitating the tailored production of enzymes in a diversity of bioconversion processes.


Subject(s)
Cellulases/biosynthesis , Endo-1,4-beta Xylanases/biosynthesis , Fungal Proteins/biosynthesis , Hypocrea/enzymology , Trichoderma/enzymology , Arabinose/metabolism , Bioreactors , Cellobiose/metabolism , Culture Media , Fermentation , Glucose/metabolism , Kinetics , Xylose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...