Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13006, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844607

ABSTRACT

The experimental findings from the Large Helical Device have demonstrated a fast, nondiffusive behavior during the propagation of heat pulses, with an observed increase in speed with reduction in their temporal width. Concurrent propagation of the temperature gradient and turbulence, in a timeframe spanning from a few milliseconds to tens of milliseconds, aligned with the avalanche model. These results indicate that the more spatiotemporally localized the heat and turbulence pulses are, the greater the deviation of the plasma from its equilibrium state, coupled with faster propagation velocity. This insight is pivotal for future fusion reactors, which necessitate the maintenance of a steady-state, non-equilibrium condition.

2.
Sci Rep ; 14(1): 12175, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806603

ABSTRACT

A symmetry-breaking in rotational spatial pattern of quasi-periodic solitary oscillations is revealed with tomography measurement of plasma emission, simultaneously with background asymmetry in stationary plasma structure. Although the oscillatory pattern deformation is a natural course in the presence of asymmetry, elaborate analyses identify existence unfeatured nonlinear effects of the background asymmetry, i.e., its nonlinear couplings with harmonic modes of rotational symmetry, to produce non-harmonic mode to break the symmetry and cause the oscillatory pattern to be chaotic. The findings suggest the unrecognized fundamental process for plasmas to be turbulent.

3.
Rev Sci Instrum ; 79(10): 10E519, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044501

ABSTRACT

An experimental technique to investigate fast ion confinement based on charge exchange spectroscopy of H(alpha)-light was applied to evaluate the confinement property of perpendicular fast ions in large helical device (LHD). Sensitivities of the H(alpha) spectra to the pitch angles of injected neutral beams (NBs) and these to the angle between the sight line of the measurement and NB injection path are examined. The energy dependence of the charge exchange cross section significantly affects the observed spectra since the driving NB is injected perpendicular to the magnetic field lines in the geometry of LHD. The measured spectra are compared to the spectra of GNET simulation results and the simulated spectra agreed well with the experimental measurement when we take into account the contribution of halo neutrals. Although it is difficult to obtain the fast ion distribution functions directly, this technique provides useful experimental data in benchmarking simulation codes.

4.
Rev Sci Instrum ; 79(10): 10F112, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044596

ABSTRACT

Reflectometry has been expected to be one of the key diagnostics to measure density profiles. We have applied an ultrashort-pulse reflectometry (USPR) system to Large Helical Device in the National Institute for Fusion Science. Wide frequency band system is required to obtain wide density profile since an incident wave is reflected at the density layer corresponding to its cutoff frequency. The reflectometry utilizes an impulse with less than 30 ps pulse width as a source. Since the bandwidth of an impulse has an inverse relation to the pulse width, we can cover the frequency range of micro- to millimeter waves (18-40 GHz) with a single source. The density profiles can be reconstructed by collecting time-of-flight (TOF) signals for each frequency component of an impulse reflected from the corresponding cutoff layer. We utilize the signal record analysis (SRA) method to reconstruct the density profiles from the TOF signal. The effectiveness of the SRA method for the profile reconstruction is confirmed by a simulation study of the USPR using a finite-difference time domain method.

SELECTION OF CITATIONS
SEARCH DETAIL
...