Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 14(1): 851, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191606

ABSTRACT

The proposed AI-based diagnostic system aims to predict the respiratory support required for COVID-19 patients by analyzing the correlation between COVID-19 lesions and the level of respiratory support provided to the patients. Computed tomography (CT) imaging will be used to analyze the three levels of respiratory support received by the patient: Level 0 (minimum support), Level 1 (non-invasive support such as soft oxygen), and Level 2 (invasive support such as mechanical ventilation). The system will begin by segmenting the COVID-19 lesions from the CT images and creating an appearance model for each lesion using a 2D, rotation-invariant, Markov-Gibbs random field (MGRF) model. Three MGRF-based models will be created, one for each level of respiratory support. This suggests that the system will be able to differentiate between different levels of severity in COVID-19 patients. The system will decide for each patient using a neural network-based fusion system, which combines the estimates of the Gibbs energy from the three MGRF-based models. The proposed system were assessed using 307 COVID-19-infected patients, achieving an accuracy of [Formula: see text], a sensitivity of [Formula: see text], and a specificity of [Formula: see text], indicating a high level of prediction accuracy.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Tomography, X-Ray Computed , Neural Networks, Computer , Oxygen , Patients
2.
Cancers (Basel) ; 15(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958390

ABSTRACT

Breast cancer stands out as the most frequently identified malignancy, ranking as the fifth leading cause of global cancer-related deaths. The American College of Radiology (ACR) introduced the Breast Imaging Reporting and Data System (BI-RADS) as a standard terminology facilitating communication between radiologists and clinicians; however, an update is now imperative to encompass the latest imaging modalities developed subsequent to the 5th edition of BI-RADS. Within this review article, we provide a concise history of BI-RADS, delve into advanced mammography techniques, ultrasonography (US), magnetic resonance imaging (MRI), PET/CT images, and microwave breast imaging, and subsequently furnish comprehensive, updated insights into Molecular Breast Imaging (MBI), diagnostic imaging biomarkers, and the assessment of treatment responses. This endeavor aims to enhance radiologists' proficiency in catering to the personalized needs of breast cancer patients. Lastly, we explore the augmented benefits of artificial intelligence (AI), machine learning (ML), and deep learning (DL) applications in segmenting, detecting, and diagnosing breast cancer, as well as the early prediction of the response of tumors to neoadjuvant chemotherapy (NAC). By assimilating state-of-the-art computer algorithms capable of deciphering intricate imaging data and aiding radiologists in rendering precise and effective diagnoses, AI has profoundly revolutionized the landscape of breast cancer radiology. Its vast potential holds the promise of bolstering radiologists' capabilities and ameliorating patient outcomes in the realm of breast cancer management.

3.
Diagnostics (Basel) ; 12(3)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35328249

ABSTRACT

Early grading of coronavirus disease 2019 (COVID-19), as well as ventilator support machines, are prime ways to help the world fight this virus and reduce the mortality rate. To reduce the burden on physicians, we developed an automatic Computer-Aided Diagnostic (CAD) system to grade COVID-19 from Computed Tomography (CT) images. This system segments the lung region from chest CT scans using an unsupervised approach based on an appearance model, followed by 3D rotation invariant Markov-Gibbs Random Field (MGRF)-based morphological constraints. This system analyzes the segmented lung and generates precise, analytical imaging markers by estimating the MGRF-based analytical potentials. Three Gibbs energy markers were extracted from each CT scan by tuning the MGRF parameters on each lesion separately. The latter were healthy/mild, moderate, and severe lesions. To represent these markers more reliably, a Cumulative Distribution Function (CDF) was generated, then statistical markers were extracted from it, namely, 10th through 90th CDF percentiles with 10% increments. Subsequently, the three extracted markers were combined together and fed into a backpropagation neural network to make the diagnosis. The developed system was assessed on 76 COVID-19-infected patients using two metrics, namely, accuracy and Kappa. In this paper, the proposed system was trained and tested by three approaches. In the first approach, the MGRF model was trained and tested on the lungs. This approach achieved 95.83% accuracy and 93.39% kappa. In the second approach, we trained the MGRF model on the lesions and tested it on the lungs. This approach achieved 91.67% accuracy and 86.67% kappa. Finally, we trained and tested the MGRF model on lesions. It achieved 100% accuracy and 100% kappa. The results reported in this paper show the ability of the developed system to accurately grade COVID-19 lesions compared to other machine learning classifiers, such as k-Nearest Neighbor (KNN), decision tree, naïve Bayes, and random forest.

SELECTION OF CITATIONS
SEARCH DETAIL
...