Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromolecules ; 57(5): 2218-2229, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38495385

ABSTRACT

Here, we present a detailed description of the in situ isothermal crystallization of poly(trimethylene 2,5-furandicarboxylate)(PTF) as revealed by real-time Fourier transform infrared spectroscopy (FTIR) and grazing incidence wide-angle X-ray scattering (GIWAXS). From FTIR experiments, the evolution of hydrogen bonding with crystallization time can be monitored in real time, while from GIWAXS, crystal formation can be followed. Density functional theory (DFT) calculations have been used to simulate FTIR spectra for different theoretical structures, enabling a precise band assignment. In addition, based on DFT ab initio calculations, the influence of hydrogen bonding on the evolution with crystallization time can be understood. Moreover, from DFT calculations and comparison with both FTIR and GIWAXS experiments, a crystalline structure of poly(trimethylene 2,5-furandicarboxylate) is proposed. Our results demonstrate that hydrogen bonding is present in both the crystalline and the amorphous phases and its rearrangement can be considered as a significant driving force for crystallization of poly(alkylene 2,5-furanoate)s.

2.
Phys Rev E ; 104(3-1): 034310, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654175

ABSTRACT

This work describes a simple agent model for the spread of an epidemic outburst, with special emphasis on mobility and geographical considerations, which we characterize via statistical mechanics and numerical simulations. As the mobility is decreased, a percolation phase transition is found separating a free-propagation phase in which the outburst spreads without finding spatial barriers and a localized phase in which the outburst dies off. Interestingly, the number of infected agents is subject to maximal fluctuations at the transition point, building upon the unpredictability of the evolution of an epidemic outburst. Our model also lends itself to testing vaccination schedules. Indeed, it has been suggested that if a vaccine is available but scarce it is convenient to carefully select the vaccination program to maximize the chances of halting the outburst. We discuss and evaluate several schemes, with special interest on how the percolation transition point can be shifted, allowing for higher mobility without epidemiological impact.

3.
Phys Chem Chem Phys ; 22(21): 12092-12103, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32441728

ABSTRACT

Langmuir monolayers are monomolecular deep films composed of amphiphilic molecules which are typically confined to a water/air interface in a bi-dimensional structure. Due to the important applications in many research areas, they have been studied for many years. Their phase diagrams present several condensed phases, showing untilted or tilted structures at low values of surface pressure. In this paper, we present a novel density functional study on tilted phases of different fatty acid Langmuir monolayers. By means of this study, a further understanding of the physical chemistry properties and the nature of the formation of tilted monolayers can be achieved. Our calculations reveal that, regardless of the number of carbon atoms which form the apolar chain, the transversal (or conventional in the case of untilted phases) unit cell shows similar dimensions, ca. 4.9 × 6.8 Å, which is in fair agreement with the range of the observed data. The energy variation of the unit cell as a function of the inclination of the molecules, reveals an abrupt increase in values larger than 45° and 36° for NN- and NNN-tilt, respectively, in fair agreement with the experimental observation of L2h (NN) and L2' (NNN) phases of fatty acids. All of the fatty acids explored (from 10 to 19 carbon atoms) yield similar results. Finally, the energetics and structural changes of the monolayer along the variation of the area per molecule, obtained by enlarging in a-, b- or both axes of the untilted unit cell, have been explored. This study reveals that the untilted phases are energetically more stable at low values of area per molecule (high surface concentration), as it is expected. When the area per molecule values are increased, tilted phases (along NN or NNN-direction) with b/a ratio typical of herringbone (HB) or pseudo-herringbone (PHB) structures are found in the lowest energy configurations, which depend on how the distortion of the untilted unit cell is performed. For example, HB structures are the most stable when the molecules tilt along the enlarged axis of the untilted unit cell (a or b), meanwhile unit cell structures characteristic of PHB configurations occur in the opposite cases and at larger values of the area per molecule (low surface concentrations). All these predictions are in good agreement with the GIXD observations of the different phases of the phase diagram of fatty acid Langmuir monolayers.

4.
Phys Chem Chem Phys ; 21(21): 11203-11213, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31099366

ABSTRACT

Langmuir monolayers are monomolecular wide films composed of amphiphilic molecules with a bi-dimensional structure typically formed at the air-water interface. They have been studied for many years because these monolayers have important applications in many research fields. Their phase diagrams present several condensed phases whose atomic structure is not yet completely known. We present a novel density functional study on palmitic acid dimers and monolayers. Our results reveal that dihydrogen contacts established among alkyl chains play a leading role in the final structure, regarding both dimers and for the arrangement of molecules in the monolayer. In addition, our calculations show that tilted phases at approx. 30° can be formed without significant loss of structure stability, a result that is in agreement with the experimental findings. Different structures for the high pressure phases, S and CS, are proposed here for the first time, being in good agreement with the diffraction data available. Furthermore, linear compressibility values also in accordance with previous experimental studies are presented for several structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...