Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 822: 153515, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35101508

ABSTRACT

Graphene oxide (GO) production has increased considerably and therefore its presence in the environment is inevitable. When in aquatic environment GO can interact with co-existing compounds, modifying their toxicities for several organisms. However, the toxic effects of co-exposure of GO and organic compounds are rarely reported in the literature. Herein, we studied the behavior of four organic aquatic contaminants found in surface water such as 2-phenylbenzotriazoles (non-Cl PBTA-9 and PBTA-9) and phenoxyphenyl pesticides, pyriproxyfen (PYR) and lambdacyhalothrin (LCT), in the presence of GO. GO reduced 90% and 83% of the toxicity of non-Cl PBTA-9 and PBTA for Daphnia. When PBTAs were adsorbed onto GO surface their interactions caused GO agglomeration (up to 20 mm) and consequent precipitation, making PBTAs less bioavailable. PYR and LCT's toxicities increased up to 83% for PYR and 47% for LCT in the presence of GO, because their adsorption on GO lead to the stabilization of the suspensions (up to 0.5 µm). Those particles were then easily ingested and retained in the digestive tract of the daphnids, triggering the Trojan horse effect. Based on theoretical calculations we observed that PBTA compounds are planar, electron-poorer and more reactive than the studied pesticides, suggesting a better stability of the GO/PBTA complexes. PYR and LCT are nonplanar, electron-richer and less reactive towards GO than PBTAs, forming less stable GO complexes that could facilitate the desorption of pesticides, increasing toxic effects. Our results suggest that the properties of the organic toxicants can influence the stability of graphene oxide suspensions, playing a fundamental role in the modulation of their toxicity. Further research is needed for a deep understanding of the behavior of nanomaterials in the presence of contaminants and their effect in the toxicity of aquatic organisms.


Subject(s)
Graphite , Water Pollutants, Chemical , Animals , Aquatic Organisms , Daphnia , Graphite/chemistry , Graphite/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
2.
Anal Chim Acta ; 843: 18-26, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25150693

ABSTRACT

Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.

3.
J Chromatogr A ; 1346: 1-7, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24786655

ABSTRACT

Solid-phase microextraction (SPME) using cross-linked polymeric ionic liquid (PIL)-based sorbent coatings was used to extract volatile aroma-related compounds from coffee samples. Several PIL-based coatings were screened alongside a commercial poly(acrylate) (PA) SPME coating. The best performing PIL-based SPME fiber, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonylimide]) with 50% (w/w) 1,12-di(3-vinylbenzylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide incorporated cross-linker, was used to isolate the volatile fraction of Arabica coffee. To illustrate the importance of trace analyte isolation, a method for the detection and quantification of coffee adulteration is described. Chromatographic profiles obtained by gas chromatography/mass spectrometry (GC/MS) were used to create the chemometric model. Partial least squares (PLS) regression was employed to correlate the aroma-related chemical fingerprint to the degree of adulteration. The proposed method successfully detected fraud down to 1% (w/w) of adulterant and accurately determined the degree of coffee adulteration (i.e, root mean square error of calibration and prediction of 0.54% and 0.83% (w/w), respectively). Finally, important aroma-related compounds including furans, methoxyphenols, pyrazines, and ketones were identified.


Subject(s)
Coffea/chemistry , Food Technology/methods , Gas Chromatography-Mass Spectrometry , Ionic Liquids/chemistry , Solid Phase Microextraction , Food Quality , Polymers/chemistry , Regression Analysis
4.
Talanta ; 116: 1079-84, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24148519

ABSTRACT

In this paper it is reported the use of the chromatographic profiles from volatile fractions of plant clones - in this case, hybrids of Eucalyptus grandis×Eucalyptus urophylla - to determine specimens susceptible to rust disease. The analytes were isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography combined to fast quadrupole mass spectrometry (GC×GC-qMS). Parallel Factor Analysis (PARAFAC) was employed for estimate the correlation between the chromatographic profiles and resistance against Eucalyptus rust, after preliminary variable selection performed by Fisher ratio analysis. The proposed method allowed the differentiation between susceptible and non-susceptible clones and determination of three resistance biomarkers. This approach can be a valuable alternative for the otherwise time-consuming and labor-intensive methods commonly used.


Subject(s)
Eucalyptus/chemistry , Gas Chromatography-Mass Spectrometry/methods , Plant Diseases/immunology , Plant Immunity , Plant Leaves/chemistry , Volatile Organic Compounds/analysis , Biomarkers/analysis , Chimera , Eucalyptus/immunology , Eucalyptus/metabolism , Multivariate Analysis , Plant Diseases/microbiology , Plant Leaves/immunology , Plant Leaves/metabolism , Solid Phase Microextraction
5.
Diagn Microbiol Infect Dis ; 76(4): 419-24, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23747028

ABSTRACT

The aim of this study was to isolate, quantify, identify, and compare opportunistic microorganisms (Candida and Staphylococcus genera and Enterobacteriaceae/Pseudomonadaceae families) from prosthesis-fitting surfaces, the hard palate, and mouth rinses of individuals wearing removable maxillary prosthesis with (50) and without (50) lesions of denture stomatitis (DS). The strains were collected and identified using phenotypic, biochemical and molecular tests. The counts of microorganisms were significantly higher in the group of individuals with DS (P < 0.05). C. albicans was the most frequently isolated yeast species in both groups, following by C. tropicalis and C. glabrata. Six isolates were identified as C. dubliniensis. S. aureus and S. epidermidis were the most frequent Staphylococcus species in both groups. Klebsiella pneumoniae was the predominant species in both groups. The association between Candida spp. and bacteria isolated in this study with DS suggests that these microorganisms may play important roles in the establishment and persistence of this disease.


Subject(s)
Candida/isolation & purification , Candidiasis, Oral/microbiology , Enterobacteriaceae/isolation & purification , Pseudomonadaceae/isolation & purification , Staphylococcus/isolation & purification , Stomatitis, Denture/microbiology , Aged , Bacterial Typing Techniques , Candida/classification , Candidiasis, Oral/diagnosis , Candidiasis, Oral/etiology , Case-Control Studies , Colony Count, Microbial , Denture, Partial, Removable/adverse effects , Enterobacteriaceae/classification , Female , Humans , Male , Middle Aged , Mouth Mucosa/microbiology , Mouth Mucosa/pathology , Mycological Typing Techniques , Palate, Hard/microbiology , Palate, Hard/pathology , Pseudomonadaceae/classification , Staphylococcus/classification , Stomatitis, Denture/diagnosis , Stomatitis, Denture/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...