Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(18): 5395-5402, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38684070

ABSTRACT

We investigated the role of ligand clustering and density in the activation of natural killer (NK) cells. To that end, we designed reductionist arrays of nanopatterned ligands arranged with different cluster geometries and densities and probed their effects on NK cell activation. We used these arrays as an artificial microenvironment for the stimulation of NK cells and studied the effect of the array geometry on the NK cell immune response. We found that ligand density significantly regulated NK cell activation while ligand clustering had an impact only at a specific density threshold. We also rationalized these findings by introducing a theoretical membrane fluctuation model that considers biomechanical feedback between ligand-receptor bonds and the cell membrane. These findings provide important insight into NK cell mechanobiology, which is fundamentally important and essential for designing immunotherapeutic strategies targeting cancer.


Subject(s)
Cell Membrane , Killer Cells, Natural , Killer Cells, Natural/immunology , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Ligands , Lymphocyte Activation , Biomechanical Phenomena , Models, Biological
2.
ACS Appl Mater Interfaces ; 16(14): 17846-17856, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38549366

ABSTRACT

We introduce a novel approach for colloidal lithography based on the dry particle assembly into a dense monolayer on an elastomer, followed by mechanical transfer to a substrate of any material and curvature. This method can be implemented either manually or automatically and it produces large area patterns with the quality obtained by the state-of-the-art colloidal lithography at a very high throughput. We first demonstrated the fabrication of nanopatterns with a periodicity ranging between 200 nm and 2 µm. We then demonstrated two nanotechnological applications of this approach. The first one is antireflective structures, fabricated on silicon and sapphire, with different geometries including arrays of bumps and holes and adjusted for different spectral ranges. The second one is smart 3D nanostructures for mechanostimulation of T cells that are used for their effective proliferation, with potential application in cancer immunotherapy. This new approach unleashes the potential of bottom-up nanofabrication and paves the way for nanoscale devices and systems in numerous applications.

3.
ACS Omega ; 8(32): 28968-28975, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599975

ABSTRACT

T cells respond not only to biochemical stimuli transmitted through their activating, costimulatory, and inhibitory receptors but also to biophysical aspects of their environment, including the receptors' spatial arrangement. While these receptors form nanoclusters that can either colocalize or segregate, the roles of these colocalization and segregation remain unclear. Deciphering these roles requires a nanoscale platform with independent and simultaneous spatial control of multiple types of receptors. Herein, using a straightforward and modular fabrication process, we engineered a tunable nanoscale chip used as a platform for T cell stimulation, allowing spatial control over the clustering and segregation of activating, costimulatory, and inhibitory receptors. Using this platform, we showed that, upon blocked inhibition, cells became sensitive to changes in the nanoscale ligand configuration. The nanofabrication methodology described here opens a pathway to numerous studies, which will produce an important insight into the molecular mechanism of T cell activation. This insight is essential for the fundamental understanding of our immune system as well as for the rational design of future immunotherapies.

4.
ACS Appl Mater Interfaces ; 15(26): 31103-31113, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37347217

ABSTRACT

The ex vivo activation and proliferation of cytotoxic T cells are critical steps in adoptive immunotherapy. Today, T cells are activated by stimulation with antibody-coated magnetic beads, traditionally used for cell separation. Yet, efficient and controlled activation and proliferation of T cells require new antibody-bearing materials, which, in particular, deliver mechanical and topographic cues sensed by T cells. Here, we demonstrate a new approach for the activation and proliferation of human cytotoxic T cells using an elastic microbrush coated with activating and costimulatory antibodies. We found that the microbrush topography affects the protrusion of the cell membrane and the elastic response to the forces applied by cells and can be optimized to yield the strongest activation of T cells. In particular, T cells stimulated by a microbrush showed a three-fold increase in degranulation and release of cytokines over T cells stimulated with state-of-the-art magnetic beads. Furthermore, the microbrush induced a T-cell proliferation of T cells that was more prolonged and yielded much higher cell doubling than that done by the state-of-the-art methods. Our study provides an essential insight into the physical mechanism of T-cell activation and proliferation and opens the floodgates for the design of novel stimulatory materials for T-cell-based immunotherapy.


Subject(s)
Cues , T-Lymphocytes, Cytotoxic , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Lymphocyte Activation , Cell Proliferation
5.
PLoS One ; 17(8): e0272307, 2022.
Article in English | MEDLINE | ID: mdl-35917302

ABSTRACT

The current Covid-19 pandemic has a profound impact on all aspects of our lives. Aside from contagion by aerosols, the presence of the SARS-CoV-2 is ubiquitous on surfaces that millions of people handle daily. Therefore, controlling this pandemic involves the reduction of potential infections via contaminated surfaces. We developed antiviral surfaces by preparing suspensions of copper and cupric oxide nanoparticles in two different polymer matrices, poly(methyl methacrylate) and polyepoxide. For total copper contents as low as 5%, the composite material showed remarkable antiviral properties against the HCoV-OC43 human coronavirus and against a model lentivirus and proved well-resistant to accelerated aging conditions. Importantly, we showed that the Cu/CuO mixture showed optimal performances. This product can be implemented to produce a simple and inexpensive coating with long-term antiviral properties and will open the way to developing surface coatings against a broad spectrum of pathogens including SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Nanocomposites , Antiviral Agents , COVID-19/prevention & control , Copper/pharmacology , Humans , Pandemics/prevention & control , SARS-CoV-2
6.
Sci Adv ; 7(24)2021 Jun.
Article in English | MEDLINE | ID: mdl-34117052

ABSTRACT

The role of juxtaposition of activating and inhibitory receptors in signal inhibition of cytotoxic lymphocytes remains strongly debated. The challenge lies in the lack of tools that allow simultaneous spatial manipulation of signaling molecules. To circumvent this, we produced a nanoengineered multifunctional platform with molecular-scale spatial control of ligands, which was applied to elucidate KIR2DL1-mediated inhibition of NKG2D signaling-receptors of natural killer cells. This platform was conceived by bimetallic nanodot patterning with molecular-scale registry, followed by a ternary functionalization with distinct moieties. We found that a 40-nm gap between activating and inhibitory ligands provided optimal inhibitory conditions. Supported by theoretical modeling, we interpret these findings as a consequence of the size mismatch and conformational flexibility of ligands in their spatial interaction. This highly versatile approach provides an important insight into the spatial mechanism of inhibitory immune checkpoints, which is essential for the rational design of future immunotherapies.

7.
Opt Express ; 28(21): 31468-31479, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115119

ABSTRACT

We experimentally study the optical second-harmonic generation (SHG) from deep subwavelength gold-silver heterodimers, and silver-silver and gold-gold homodimers. Our results indicate a heterodimer SHG that is an order of magnitude more intense than that of the homodimers. In contrast, full-wave calculations that consider the surface and bulk contribution of individual particles, which is the conventional view on such processes, suggest that it is the silver-silver homodimer that should prevail. Based on the deep subwavelength dimension of our structure, we propose that the heterodimer nonlinearity results from a Coulomb interaction between lumped oscillating charges and not from the surface nonlinearity of each particle, as convention would have it. Our proposed model can explain the larger SHG emission observed in gold-silver heterodimers and reproduces its unique spectral lineshape.

8.
Opt Express ; 28(19): 28352-28365, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988108

ABSTRACT

Chalcogenide glasses are attractive materials for optical applications. However, these applications often require pattering of the surface with functional micro-/ nanostructures, which is challenging by traditional microfabrication. Here, we present a novel, robust, and scalable approach for the direct patterning of chalcogenide glasses, based on soft imprinting of a solvent-plasticized glass layer formed on the glass surface. We established a methodology for surfaces plasticizing, through tuning of its glass transition temperature by process conditions, without compromising on the chemical composition, structure, and optical properties of the plasticized layer. This control over the glass transition temperature allowed to imprint the surface of chalcogenide glass with features sized down to 20 nm, and achieve an unprecedented combination of full pattern transfer and complete maintenance of the shape of the imprinted substrate. We demonstrated two applications of our patterning approach: a diffraction grating, and a multifunctional pattern with both antireflective and highly hydrophobic water-repellent functionalities - a combination that has never been demonstrated for chalcogenide glasses. This work opens a new route for the nanofabrication of optical devices based on chalcogenide glasses and paves the way to numerous future applications for these important optical materials.

9.
ACS Appl Mater Interfaces ; 12(20): 22399-22409, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32323968

ABSTRACT

Contact guidance has been extensively explored using patterned adhesion functionalities that predominantly mimic cell-matrix interactions. Whether contact guidance can also be driven by other types of interactions, such as cell-cell adhesion, still remains a question. Herein, this query is addressed by engineering a set of microstrip patterns of (i) cell-cell adhesion ligands and (ii) segregated cell-cell and cell-matrix ligands as a simple yet versatile set of platforms for the guidance of spreading, adhesion, and differentiation of mesenchymal stem cells. It was unprecedently found that micropatterns of cell-cell adhesion ligands can induce contact guidance. Surprisingly, it was found that patterns of alternating cell-matrix and cell-cell strips also induce contact guidance despite providing a spatial continuum for cell adhesion. This guidance is believed to be due to the difference between the potencies of the two adhesions. Furthermore, patterns that combine the two segregated adhesion functionalities were shown to induce more human mesenchymal stem cell osteogenic differentiation than monofunctional patterns. This work provides new insight into the functional crosstalk between cell-cell and cell-matrix adhesions and, overall, further highlights the ubiquitous impact of the biochemical anisotropy of the extracellular environment on cell function.


Subject(s)
Cell Adhesion/physiology , Cell Communication/physiology , Cell Differentiation/physiology , Mesenchymal Stem Cells/metabolism , Anisotropy , Antigens, CD/metabolism , Cadherins/metabolism , Cell Adhesion/drug effects , Cell Communication/drug effects , Cell Differentiation/drug effects , Gold/chemistry , Humans , Integrins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Surface Properties , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...