Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36991899

ABSTRACT

In this paper, the low-level velocity controller of an autonomous vehicle is studied. The performance of the traditional controller used in this kind of system, a PID, is analyzed. This kind of controller cannot follow ramp references without error, so when the reference implies a change in the speed, the vehicle cannot follow the proposed reference, and there is a significant difference between the actual and desired vehicle behaviors. A fractional controller is proposed which changes the ordinary dynamics allowing faster responses for small times, at the cost of slower responses for large times. The idea is to take advantage of this fact to follow fast setpoint changes with a smaller error than that obtained with a classic non-fractional PI controller. Using this controller, the vehicle can follow variable speed references with zero stationary error, significantly reducing the difference between reference and actual vehicle behavior. The paper presents the fractional controller, studies its stability in function of the fractional parameters, designs the controller, and tests its stability. The designed controller is tested on a real prototype, and its behavior is compared to a standard PID controller. The designed fractional PID controller overcomes the results of the standard PID controller.

2.
Sensors (Basel) ; 23(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36679759

ABSTRACT

This paper presents a localization system for an autonomous wheelchair that includes several sensors, such as odometers, LIDARs, and an IMU. It focuses on improving the odometric localization accuracy using an LSTM neural network. Improved odometry will improve the result of the localization algorithm, obtaining a more accurate pose. The localization system is composed by a neural network designed to estimate the current pose using the odometric encoder information as input. The training is carried out by analyzing multiple random paths and defining the velodyne sensor data as training ground truth. During wheelchair navigation, the localization system retrains the network in real time to adjust any change or systematic error that occurs with respect to the initial conditions. Furthermore, another network manages to avoid certain random errors by using the relationship between the power consumed by the motors and the actual wheel speeds. The experimental results show several examples that demonstrate the ability to self-correct against variations over time, and to detect non-systematic errors in different situations using this relation. The final robot localization is improved with the designed odometric model compared to the classic robot localization based on sensor fusion using a static covariance.


Subject(s)
Algorithms , Wheelchairs , Neural Networks, Computer
3.
Sensors (Basel) ; 23(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36679821

ABSTRACT

Our research presents a cost-effective navigation system for electric wheelchairs that utilizes the tongue as a human-machine interface (HMI) for disabled individuals. The user controls the movement of the wheelchair by wearing a small neodymium magnet on their tongue, which is held in place by a suction pad. The system uses low-cost electronics and sensors, including two electronic compasses, to detect the position of the magnet in the mouth. One compass estimates the magnet's position while the other is used as a reference to compensate for static magnetic fields. A microcontroller processes the data using a computational algorithm that takes the mathematical formulations of the magnetic fields as input in real time. The system has been tested using real data to control an electric wheelchair, and it has been shown that a trained user can effectively use tongue movements as an interface for the wheelchair or a computer.


Subject(s)
Disabled Persons , Robotics , Wheelchairs , Humans , User-Computer Interface , Algorithms , Equipment Design
4.
Assist Technol ; 34(2): 195-203, 2022 03 04.
Article in English | MEDLINE | ID: mdl-32238095

ABSTRACT

One of the challenges faced by blind persons to achieve optimal mobility is the detection and avoidance of obstacles located in their travel path. Besides the widely used white cane, alternative or complementary devices have been developed, such as electronic aids that provide feedback about the environment. However, the devices available have been unable to provide an optimal solution with widespread acceptance, motivating the present work. The eBAT (electronic Buzzer for Autonomous Travel) is designed to offer optimal protection and employs the user's own mobile phone for easier use and reduced manufacturing costs. For this work, a group of 25 blind individuals was used to validate the eBAT based on the single-subject with reversal method (ABA study). The results show a significant decrease in the number of involuntary contacts in an unknown travel path between the first phase of the study, which did not involve the eBAT, and the second, where it was used. When the device was again removed in the third phase, the number of contacts rose. We may therefore conclude that the eBAT fills an important gap in mobility aids for blind people, yielding a clear benefit by reducing the participants' feeling of insecurity.


Subject(s)
Self-Help Devices , Visually Impaired Persons , Humans , Canes , Equipment Design
5.
Sensors (Basel) ; 21(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205803

ABSTRACT

To achieve optimal mobility, visually impaired people have to deal with obstacle detection and avoidance challenges. Aside from the broadly adopted white cane, electronic aids have been developed. However, available electronic devices are not extensively used due to their complexity and price. As an effort to improve the existing ones, this work presents the design of a low-cost aid for blind people. A standard low-cost HC-SRF04 ultrasonic range is modified by adding phase modulation in the ultrasonic pulses, allowing it to detect the origin of emission, thus discriminating if the echo pulses come from the same device and avoiding false echoes due to interference from other sources. This improves accuracy and security in areas where different ultrasonic sensors are working simultaneously. The final device, based on users and trainers feedback for the design, works with the user's own mobile phone, easing utilization and lowering manufacturing costs. The device was tested with a set of twenty blind persons carrying out a travel experiment and satisfaction survey. The main results showed a change in total involuntary contacts with unknown obstacles and high user satisfaction. Hence, we conclude that the device can fill a gap in the mobility aids and reduce feelings of insecurity amongst the blind.


Subject(s)
Self-Help Devices , Visually Impaired Persons , Canes , Equipment Design , Humans , Ultrasonics
6.
Sensors (Basel) ; 20(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316497

ABSTRACT

This paper describes a localization module for an autonomous wheelchair. This module includes a combination of various sensors such as odometers, laser scanners, IMU and Doppler speed sensors. Every sensor used in the module features variable covariance estimation in order to yield a final accurate localization. The main problem of a localization module composed of different sensors is the accuracy estimation of each sensor. Average static values are normally used, but these can lead to failure in some situations. In this paper, all the sensors have a variable covariance estimation that depends on the data quality. A Doppler speed sensor is used to estimate the covariance of the encoder odometric localization. Lidar is also used as a scan matching localization algorithm, comparing the difference between two consecutive scans to obtain the change in position. Matching quality gives the accuracy of the scan matcher localization. This structure yields a better position than a traditional odometric static covariance method. This is tested in a real prototype and compared to a standard fusion technique.

7.
Sensors (Basel) ; 18(1)2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29329205

ABSTRACT

In this paper, a study of the odometric system for the autonomous cart Verdino, which is an electric vehicle based on a golf cart, is presented. A mathematical model of the odometric system is derived from cart movement equations, and is used to compute the vehicle position and orientation. The inputs of the system are the odometry encoders, and the model uses the wheels diameter and distance between wheels as parameters. With this model, a least square minimization is made in order to get the nominal best parameters. This model is updated, including a real time wheel diameter measurement improving the accuracy of the results. A neural network model is used in order to learn the odometric model from data. Tests are made using this neural network in several configurations and the results are compared to the mathematical model, showing that the neural network can outperform the first proposed model.

8.
Sensors (Basel) ; 16(8)2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27483265

ABSTRACT

The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction.

9.
Sensors (Basel) ; 9(11): 8863-83, 2009.
Article in English | MEDLINE | ID: mdl-22291541

ABSTRACT

The contribution of this paper is a technique that in certain circumstances allows one to avoid the removal of dynamic shadows in the visible spectrum making use of images in the infrared spectrum. This technique emerged from a real problem concerning the autonomous navigation of a vehicle in a wind farm. In this environment, the dynamic shadows cast by the wind turbines' blades make it necessary to include a shadows removal stage in the preprocessing of the visible spectrum images in order to avoid the shadows being misclassified as obstacles. In the thermal images, dynamic shadows completely disappear, something that does not always occur in the visible spectrum, even when the preprocessing is executed. Thus, a fusion on thermal and visible bands is performed.

10.
Sensors (Basel) ; 9(12): 10190-200, 2009.
Article in English | MEDLINE | ID: mdl-22303169

ABSTRACT

A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...