Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 77(4): 735-749, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31297568

ABSTRACT

During S phase, replication forks can encounter several obstacles that lead to fork stalling, which if persistent might result in fork collapse. To avoid this collapse and to preserve the competence to restart, cells have developed mechanisms that maintain fork stability upon replication stress. In this study, we aimed to understand the mechanisms involved in fork stability maintenance in non-transformed human cells by performing an isolation of proteins on nascent DNA-mass spectrometry analysis in hTERT-RPE cells under different replication stress conditions. Our results show that acute hydroxyurea-induced replication blockade causes the accumulation of large amounts of single-stranded DNA at the fork. Remarkably, this results in the disengagement of replisome components from nascent DNA without compromising fork restart. Notably, Cdc45-MCM-GINS helicase maintains its integrity and replisome components remain associated with chromatin upon acute hydroxyurea treatment, whereas replisome stability is lost upon a sustained replication stress that compromises the competence to restart.


Subject(s)
DNA Replication/drug effects , Hydroxyurea/pharmacology , Cell Line , DNA, Single-Stranded/genetics , Humans , S Phase/drug effects
2.
Nat Cell Biol ; 18(11): 1196-1207, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27723717

ABSTRACT

Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically, this requires a conserved domain in ETAA1 that potently and directly stimulates ATR kinase activity independently of TopBP1. Simultaneous loss of ETAA1 and TopBP1 gives rise to synthetic lethality characterized by massive genome instability and abrogation of ATR-dependent signalling. Our findings demonstrate that parallel TopBP1- and ETAA1-mediated pathways underlie ATR activation and that their combined action is essential for coping with replication stress.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DNA Damage/genetics , DNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antigens, Surface/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Replication/genetics , DNA, Single-Stranded/genetics , DNA-Binding Proteins/genetics , HeLa Cells , Humans , Nuclear Proteins/metabolism , Phosphorylation
3.
Cell ; 155(5): 1088-103, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24267891

ABSTRACT

ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.


Subject(s)
DNA Replication , Genomic Instability , Replication Protein A/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Chromatin/chemistry , Chromatin/metabolism , DNA Damage/drug effects , Humans , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Replication Origin
SELECTION OF CITATIONS
SEARCH DETAIL
...