Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cancer Res ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885318

ABSTRACT

Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA-sequencing revealed that CALRdel52 led to the expansion of TGF-ß1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGF-ß antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, while T cell depletion abrogated the protective effects conferred by neutralizing TGF-ß. TGF-ß1 reduced perforin and TNF-α production by T cells in vitro. TGF-ß1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGF-ß1 expression. In four independent patient cohorts, TGF-ß1 expression was increased in the BM of MPN patients compared to healthy individuals, and the BM of MPN patients contained a higher frequency of Treg compared to healthy individuals. Together, this study identified an ERK/Sp1/TGF-ß1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity.

2.
Stem Cell Reports ; 19(2): 224-238, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38278152

ABSTRACT

The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Polycythemia Vera , Humans , Mice , Animals , Bone Marrow/pathology , Megakaryocytes , Janus Kinase 2/genetics , Polycythemia Vera/genetics , Polycythemia Vera/pathology , Phenotype , Fibrosis , Mutation
3.
Front Oncol ; 13: 1277453, 2023.
Article in English | MEDLINE | ID: mdl-37941547

ABSTRACT

Imetelstat shows activity in patients with myeloproliferative neoplasms, including primary myelofibrosis (PMF) and essential thrombocythemia. Here, we describe a case of prolonged disease stabilization by imetelstat treatment of a high-risk PMF patient enrolled into the clinical study MYF2001. We confirmed continuous shortening of telomere length (TL) by imetelstat treatment but observed emergence and expansion of a KRAST58I mutated clone during the patient's clinical course. In order to investigate the molecular mechanisms involved in the imetelstat treatment response, we generated induced pluripotent stem cells (iPSC) from this patient. TL of iPSC-derived hematopoietic stem and progenitor cells, which was increased after reprogramming, was reduced upon imetelstat treatment for 14 days. However, while imetelstat reduced clonogenic growth of the patient's primary CD34+ cells, clonogenic growth of iPSC-derived CD34+ cells was not affected, suggesting that TL was not critically short in these cells. Also, the propensity of iPSC differentiation toward megakaryocytes and granulocytes was not altered. Using human TF-1MPL and murine 32DMPL cell lines stably expressing JAK2V617F or CALRdel52, imetelstat-induced reduction of viability was significantly more pronounced in CALRdel52 than in JAK2V617F cells. This was associated with an immediate downregulation of JAK2 phosphorylation and downstream signaling as well as a reduction of hTERT and STAT3 mRNA expression. Hence, our data demonstrate that imetelstat reduces TL and targets JAK/STAT signaling, particularly in CALR-mutated cells. Although the exact patient subpopulation who will benefit most from imetelstat needs to be defined, our data propose that CALR-mutated clones are highly vulnerable.

5.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982353

ABSTRACT

Mast cells (MCs) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MCs occur in low abundance, which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells in the body and established a novel and robust protocol for human iPS cell differentiation toward MCs. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MCs that recapitulate SM disease features: increased number of MCs, abnormal maturation kinetics and activated phenotype, CD25 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MCs are a reliable, inexhaustible, and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.


Subject(s)
Induced Pluripotent Stem Cells , Mastocytosis, Systemic , Humans , Mastocytosis, Systemic/diagnosis , Mast Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Phenotype , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Mutation
6.
Elife ; 122023 03 14.
Article in English | MEDLINE | ID: mdl-36916882

ABSTRACT

Transcription factors play a determining role in lineage commitment and cell differentiation. Interferon regulatory factor 8 (IRF8) is a lineage determining transcription factor in hematopoiesis and master regulator of dendritic cells (DC), an important immune cell for immunity and tolerance. IRF8 is prominently upregulated in DC development by autoactivation and controls both DC differentiation and function. However, it is unclear how Irf8 autoactivation is controlled and eventually limited. Here, we identified a novel long non-coding RNA transcribed from the +32 kb enhancer downstream of Irf8 transcription start site and expressed specifically in mouse plasmacytoid DC (pDC), referred to as lncIrf8. The lncIrf8 locus interacts with the lrf8 promoter and shows differential epigenetic signatures in pDC versus classical DC type 1 (cDC1). Interestingly, a sequence element of the lncIrf8 promoter, but not lncIrf8 itself, is crucial for mouse pDC and cDC1 differentiation, and this sequence element confers feedback inhibition of Irf8 expression. Taken together, in DC development Irf8 autoactivation is first initiated by flanking enhancers and then second controlled by feedback inhibition through the lncIrf8 promoter element in the +32 kb enhancer. Our work reveals a previously unrecognized negative feedback loop of Irf8 that orchestrates its own expression and thereby controls DC differentiation.


Subject(s)
RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Feedback , Interferon Regulatory Factors/metabolism , Cell Differentiation/physiology , Enhancer Elements, Genetic , Dendritic Cells
7.
Hematol Oncol ; 41(3): 520-534, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36383121

ABSTRACT

Prevention of fatal side effects during cancer therapy of cancer patients with high-dosed pharmacological inhibitors is to date a major challenge. Moreover, the development of drug resistance poses severe problems for the treatment of patients with leukemia or solid tumors. Particularly drug-mediated dimerization of RAF kinases can be the cause of acquired resistance, also called "paradoxical activation." In the present work we re-analyzed the effects of different tyrosine kinase inhibitors (TKIs) on the proliferation, metabolic activity, and survival of the Imatinib-resistant, KIT V560G, D816V-expressing human mast cell (MC) leukemia (MCL) cell line HMC-1.2. We observed that low concentrations of the TKIs Nilotinib and Ponatinib resulted in enhanced proliferation, suggesting paradoxical activation of the MAPK pathway. Indeed, these TKIs caused BRAF-CRAF dimerization, resulting in ERK1/2 activation. The combination of Ponatinib with the MEK inhibitor Trametinib, at nanomolar concentrations, effectively suppressed HMC-1.2 proliferation, metabolic activity, and induced apoptotic cell death. Effectiveness of this drug combination was recapitulated in the human KIT D816V MC line ROSAKIT D816V and in KIT D816V hematopoietic progenitors obtained from patient-derived induced pluripotent stem cells (iPS cells) and systemic mastocytosis patient samples. In conclusion, mutated KIT-driven Imatinib resistance and possible TKI-induced paradoxical activation can be efficiently overcome by a low concentration Ponatinib and Trametinib co-treatment, potentially reducing the negative side effects associated with MCL therapy.


Subject(s)
Leukemia, Mast-Cell , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Mast-Cell/metabolism , Leukemia, Mast-Cell/pathology , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/pharmacology , Mast Cells/metabolism , Mast Cells/pathology , Proto-Oncogene Proteins c-kit/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation
8.
Trends Mol Med ; 28(11): 902-905, 2022 11.
Article in English | MEDLINE | ID: mdl-36064534

ABSTRACT

Mast cells have been implicated as mediators of bone marrow fibrosis and pruritus in myeloproliferative neoplasms (MPNs) with JAK2V617F or calreticulin mutations. We hypothesize that potent KIT inhibitors, already in clinical use for systemic mastocytosis, have therapeutic potential for the treatment of MPNs by directly targeting mast cells.


Subject(s)
Mastocytosis, Systemic , Myeloproliferative Disorders , Humans , Mast Cells , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Mastocytosis, Systemic/drug therapy , Mastocytosis, Systemic/genetics , Mutation
10.
Stem Cell Res ; 60: 102732, 2022 04.
Article in English | MEDLINE | ID: mdl-35279545

ABSTRACT

The receptor tyrosine kinase c-KIT (CD117) has a key role in hematopoiesis and is a marker for endothelial and cardiac progenitor cells. In vivo, deficiency of c-KIT is lethal and therefore using CRISPR/Cas9 editing we generated heterozygous and homozygous c-KIT knockout human embryonic stem cell (ES cell) lines. The c-KIT knockout left ES cell pluripotency unaffected as shown by immunofluorescence and trilineage differentiation potential. Heterozygous and homozygous c-KIT knockouts showed complete loss of exon 17, resulting in ablation of c-KIT protein from the cell surface. c-KIT knockout ES cells provide a valuable tool for further investigating c-KIT biology.


Subject(s)
Human Embryonic Stem Cells , CRISPR-Cas Systems/genetics , Cell Line , Heterozygote , Homozygote , Human Embryonic Stem Cells/metabolism , Humans
11.
Biomaterials ; 282: 121389, 2022 03.
Article in English | MEDLINE | ID: mdl-35121357

ABSTRACT

Colonies of induced pluripotent stem cells (iPSCs) reveal aspects of self-organization even under culture conditions that maintain pluripotency. To investigate the dynamics of this process under spatial confinement, we used either polydimethylsiloxane (PDMS) pillars or micro-contact printing of vitronectin. There was a progressive upregulation of OCT4, E-cadherin, and NANOG within 70 µm from the outer rim of iPSC colonies. Single-cell RNA-sequencing and spatial reconstruction of gene expression demonstrated that OCT4high subsets, residing at the edge of the colony, have pronounced up-regulation of the TGF-ß pathway, particularly of NODAL and its inhibitor LEFTY. Interestingly, after 5-7 days, iPSC colonies detached spontaneously from micro-contact printed substrates to form 3D aggregates. This new method allowed generation of embryoid bodies (EBs) of controlled size without enzymatic or mechanical treatment. Within the early 3D aggregates, radial organization and differential gene expression continued in analogy to the changes observed during self-organization of iPSC colonies. Early self-detached aggregates revealed up-regulated germline-specific gene expression patterns as compared to conventional EBs. However, there were no marked differences after further directed differentiation toward hematopoietic, mesenchymal, and neuronal lineages. Our results provide further insight into the gradual self-organization within iPSC colonies and at their transition into EBs.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation/physiology , Embryoid Bodies/metabolism , Up-Regulation
12.
Sci Rep ; 12(1): 2333, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149687

ABSTRACT

Bone defects stand out as one of the greatest challenges of reconstructive surgery. Fused deposition modelling (FDM) allows for the printing of 3D scaffolds tailored to the morphology and size of bone damage in a patient-specific and high-precision manner. However, FDM still suffers from the lack of materials capable of efficiently supporting osteogenesis. In this study, we developed 3D-printed porous scaffolds composed of polylactic acid/hydroxyapatite (PLA/HA) composites with high ceramic contents (above 20%, w/w) by FDM. The mechanical properties of the PLA/HA scaffolds were compatible with those of trabecular bone. In vitro degradation tests revealed that HA can neutralize the acidification effect caused by PLA degradation, while simultaneously releasing calcium and phosphate ions. Importantly, 3D-printed PLA/HA did not induce the upregulation of activation markers nor the expression of inflammatory cytokines in dendritic cells thus exhibiting no immune-stimulatory properties in vitro. Evaluations using human mesenchymal stem cells (MSC) showed that pure PLA scaffolds exerted an osteoconductive effect, whereas PLA/HA scaffolds efficiently induced osteogenic differentiation of MSC even in the absence of any classical osteogenic stimuli. Our findings indicate that 3D-printed PLA scaffolds loaded with high concentrations of HA are most suitable for future applications in bone tissue engineering.


Subject(s)
Biocompatible Materials/pharmacology , Dendritic Cells/immunology , Durapatite/pharmacology , Mesenchymal Stem Cells/cytology , Osteogenesis , Polyesters/pharmacology , Tissue Scaffolds , Adult , Aged , Animals , Biomechanical Phenomena , Calcium/metabolism , Cells, Cultured , Durapatite/immunology , Humans , Materials Testing , Mesenchymal Stem Cells/drug effects , Mice , Osteogenesis/drug effects , Printing, Three-Dimensional
13.
Stem Cell Reports ; 16(11): 2768-2783, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34678208

ABSTRACT

Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs.


Subject(s)
Calreticulin/genetics , Frameshift Mutation , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Myeloproliferative Disorders/genetics , Calreticulin/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Flow Cytometry , Gene Expression Profiling/methods , Humans , Megakaryocytes/ultrastructure , Microscopy, Electron, Transmission , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Reverse Transcriptase Polymerase Chain Reaction , Thrombopoiesis/genetics
14.
Front Cell Dev Biol ; 9: 667304, 2021.
Article in English | MEDLINE | ID: mdl-34368123

ABSTRACT

Dendritic cells (DC) are professional antigen-presenting cells that develop from hematopoietic stem cells. Different DC subsets exist based on ontogeny, location and function, including the recently identified proinflammatory DC3 subset. DC3 have the prominent activity to polarize CD8+ T cells into CD8+ CD103+ tissue resident T cells. Here we describe human DC3 differentiated from induced pluripotent stem cells (iPS cells). iPS cell-derived DC3 have the gene expression and surface marker make-up of blood DC3 and polarize CD8+ T cells into CD8+ CD103+ tissue-resident memory T cells in vitro. To test the impact of malignant JAK2 V617F mutation on DC3, we differentiated patient-specific iPS cells with JAK2 V617Fhet and JAK2 V617Fhom mutations into JAK2 V617Fhet and JAK2 V617Fhom DC3. The JAK2 V617F mutation enhanced DC3 production and caused a bias toward erythrocytes and megakaryocytes. The patient-specific iPS cell-derived DC3 are expected to allow studying DC3 in human diseases and developing novel therapeutics.

15.
Ann Hematol ; 100(12): 2943-2956, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34390367

ABSTRACT

Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing-associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.


Subject(s)
Antigens, CD34/genetics , Myeloproliferative Disorders/genetics , Transcriptome , Gene Expression Regulation, Neoplastic , Humans , Polycythemia Vera/genetics , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/genetics
16.
Stem Cell Res ; 55: 102490, 2021 08.
Article in English | MEDLINE | ID: mdl-34391098

ABSTRACT

The chemokine CXCL4/platelet factor 4 (PF4) gene, a key player in myelofibrosis, was knocked out by CRISPR/Cas9 in induced pluripotent stem cells (iPS cells) of a polycythemia vera (PV) patient with JAK2 V617F mutation. Two CXCL4KO iPS cell lines with and without JAK2 V617F mutation (UKAi002-B-1 and UKAi002-A-1, respectively) were generated. CXCL4KO iPS cells showed deletion of exon 1 and complete loss of CXCL4 protein. Pluripotency of iPS cells was confirmed by expression of pluripotency markers and trilineage differentiation. CXCL4KO iPS cells are expected to provide a valuable tool for investigating the role of CXCL4 in human diseases.


Subject(s)
Induced Pluripotent Stem Cells , Polycythemia Vera , CRISPR-Cas Systems/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mutation , Polycythemia Vera/genetics
17.
Blood ; 137(15): 2070-2084, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33512435

ABSTRACT

The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Mastocytosis, Systemic/drug therapy , Point Mutation/drug effects , Proto-Oncogene Proteins c-kit/genetics , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mastocytosis, Systemic/genetics , Mastocytosis, Systemic/pathology , Tumor Cells, Cultured
18.
Biomacromolecules ; 22(2): 454-466, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33284004

ABSTRACT

Cellulose nanocrystals (CNCs) are unique and promising natural nanomaterials that can be extracted from native cellulose fibers by acid hydrolysis. In this study, we developed chemically modified CNC derivatives by covalent tethering of PEGylated biotin and perylenediimide (PDI)-based near-infrared organic dye and evaluated their suitability for labeling and imaging of different cell lines including J774A.1 macrophages, NIH-3T3 fibroblasts, HeLa adenocarcinoma cells, and primary murine dendritic cells. PDI-labeled CNCs showed a superior photostability compared to similar commercially available dyes under long periods of constant and high-intensity illumination. All CNC derivatives displayed excellent cytocompatibility toward all cell types and efficiently labeled cells in a dose-dependent manner. Moreover, CNCs were effectively internalized and localized in the cytoplasm around perinuclear areas. Thus, our findings demonstrate the suitability of these new CNC derivatives for labeling, imaging, and long-time tracking of a variety of cell lines and primary cells.


Subject(s)
Nanoparticles , Nanostructures , Animals , Cellulose , HeLa Cells , Humans , Mice
19.
Front Microbiol ; 7: 2030, 2016.
Article in English | MEDLINE | ID: mdl-28066356

ABSTRACT

The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp. pauca strain 9a5c. These proteins display a high similarity to their homologs in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli. The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss the possible influence of wild-type XfYgiT in the cell.

20.
Front Microbiol ; 7: 2090, 2016.
Article in English | MEDLINE | ID: mdl-28082960

ABSTRACT

The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.

SELECTION OF CITATIONS
SEARCH DETAIL
...