Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Methods ; 495: 113071, 2021 08.
Article in English | MEDLINE | ID: mdl-33991531

ABSTRACT

Several diagnostic tools have been developed for clinical and epidemiological assays. RT-PCR and antigen detection tests are more useful for diagnosis of acute disease, while antibody tests allow the estimation of exposure in the population. Currently, there is an urgent need for the development of diagnostic tests for COVID-19 that can be used for large-scale epidemiological sampling. Through a comprehensive strategy, potential 16 mer antigenic peptides suited for antibody-based SARS-CoV-2 diagnosis were identified. A systematic scan of the three structural proteins (S,N and M) and the non-structural proteins (ORFs) present in the SARS-CoV-2 virus was conducted through the combination of immunoinformatic methods, peptide SPOT synthesis and an immunoassay with cellulose-bound peptides (Pepscan). The Pepscan filter paper sheets with synthetic peptides were tested against pools of sera of COVID-19 patients. Antibody recognition showed a strong signal for peptides corresponding to the S, N and M proteins of SARS-CoV-2 virus, but not for the ORFs proteins. The peptides exhibiting higher signal intensity were found in the C-terminal region of the N protein. Several peptides of this region showed strong recognition with all three immunoglobulins in the pools of sera. The differential reactivity observed between the different immunoglobulin isotypes (IgA, IgM and IgG) within different regions of the S and N proteins, can be advantageous for ensuring accurate diagnosis of all infected patients, with different times of exposure to infection. Few peptides of the M protein showed antibody recognition and no recognition was observed for peptides of the ORFs proteins.


Subject(s)
COVID-19 Serological Testing/methods , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Informatics/methods , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Computational Biology , Coronavirus M Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Peptides/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Viral Immunol ; 31(8): 568-574, 2018 10.
Article in English | MEDLINE | ID: mdl-30256730

ABSTRACT

Acute hepatitis C virus (HCV) infection is usually asymptomatic, therefore, early diagnosis is rare. It may remain undiagnosed in individuals who progress to chronic infection, often until serious liver damage has developed. To incorporate the diagnosis of this viral disease in a multiple-diagnostic assay, we first analyzed by immunoinformatics the HCV subtype 1a polyprotein (specifically Core, E2, NS3, NS5A proteins) to select antigenic peptides to be tested initially by the Pepscan technique. Next, we performed the immunodiagnosis of HCV infection, using the Multiple Antigen Blot Assay (MABA). In 22 patients' sera included in this study, a 20-mer linear peptide belonging to the N-terminus of the worldwide conserved Core protein showed 100% sensitivity and specificity; other sequences showed different levels of antibody recognition. The use of MABA in combination with synthetic peptides as a source of multiple, specific, and nonexpensive antigens for other infectious diseases could represent a rapid, integrated, and inexpensive diagnostic methodology.


Subject(s)
Hepacivirus/immunology , Hepatitis C/diagnosis , Immunologic Tests/methods , Peptides/immunology , Viral Nonstructural Proteins/immunology , Acute Disease , Antigens, Viral/immunology , Hepacivirus/isolation & purification , Hepatitis C/blood , Hepatitis C/immunology , Hepatitis C Antibodies/blood , Humans , Immunoblotting/methods , Peptides/chemical synthesis , Viral Core Proteins/immunology , Viral Nonstructural Proteins/isolation & purification
3.
Methods Mol Biol ; 1312: 301-19, 2015.
Article in English | MEDLINE | ID: mdl-26044013

ABSTRACT

This simple, versatile, reliable, reproducible, multipurpose, and inexpensive technique is based on the adhesion of different antigens to a single nitrocellulose strip using, as template, an acrylic device containing 28 parallel channels. The inclusion of channels containing normal human serum improves the quality control of this assay. Antigen-sensitized nitrocellulose strips are cut perpendicularly to the antigen-rows, exposed to immune sera followed by the appropriate conjugate. Positive signals are recorded using chemiluminescent or precipitable colorimetric substrates. This assay allows the simultaneous qualitative demonstration of antigenicity and immunogenicity of antigens obtained as synthetic peptides, recombinant molecules, or crude preparations, with high sensitivity and specificity. Its major value is based on the rapid and simultaneous comparative evaluation of various antigenic preparations allowing the diagnosis of a variety of infectious, allergic, and autoimmune diseases. It can in general be used to detect any type of antibody or circulating antigen. Some improvements and variants of the original technique are included.


Subject(s)
Antibodies/analysis , Antigens/analysis , Immunoblotting/methods , Antibodies/chemistry , Antigens/chemistry , Colorimetry , Humans , Luminescent Measurements , Periodic Acid/chemistry , Time Factors
4.
Methods Mol Biol ; 536: 237-51, 2009.
Article in English | MEDLINE | ID: mdl-19378063

ABSTRACT

This technique is based on the sensitization of different antigens in a single nitrocellulose strip, which react when exposed to an immune serum and thereafter with the appropriate peroxidase conjugate and the corresponding substrate. Signals in those reactive spots are recorded as black squares in a negative photographic film, using a chemiluminiscent substrate or as blue spots when a precipitable colorimetric substrate is used. This technique allows the simultaneous demonstration of antigenicity of different antigens (peptides, recombinant molecules, and crude preparations), with a high sensitivity and specificity. Its major value is based on its versatility, since it is possible to rapidly evaluate and to compare various antigenic preparations and to use it for diagnosis of different infectious, allergic and autoimmune diseases, at a low cost.


Subject(s)
Antigens , Blotting, Western/methods , Immunoenzyme Techniques/methods , Animals , Antigens/analysis , Blotting, Western/economics , Blotting, Western/instrumentation , Humans , Immunoenzyme Techniques/economics , Immunoenzyme Techniques/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...