Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Rev ; 15(4): 515-530, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37681092

ABSTRACT

Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.

2.
Protein Sci ; 32(6): e4649, 2023 06.
Article in English | MEDLINE | ID: mdl-37159024

ABSTRACT

ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin-the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of ß-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 µm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.


Subject(s)
Insulin , Proinsulin , Insulin/chemistry , Proinsulin/analysis , Proinsulin/chemistry , Proinsulin/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/analysis , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Secretory Vesicles/chemistry , Secretory Vesicles/metabolism
3.
Curr Res Struct Biol ; 4: 285-307, 2022.
Article in English | MEDLINE | ID: mdl-36164646

ABSTRACT

Protein conformation and cell compartmentalization are fundamental concepts and subjects of vast scientific endeavors. In the last two decades, we have witnessed exciting advances that unveiled the conjunction of these concepts. An avalanche of studies highlighted the central role of biomolecular condensates in membraneless subcellular compartmentalization that permits the spatiotemporal organization and regulation of myriads of simultaneous biochemical reactions and macromolecular interactions. These studies have also shown that biomolecular condensation, driven by multivalent intermolecular interactions, is mediated by order-disorder transitions of protein conformation and by protein domain architecture. Conceptually, protein condensation is a distinct level in protein conformational landscape in which collective folding of large collections of molecules takes place. Biomolecular condensates arise by the physical process of phase separation and comprise a variety of bodies ranging from membraneless organelles to liquid condensates to solid-like conglomerates, spanning lengths from mesoscopic clusters (nanometers) to micrometer-sized objects. In this review, we summarize and discuss recent work on the assembly, composition, conformation, material properties, thermodynamics, regulation, and functions of these bodies. We also review the conceptual framework for future studies on the conformational dynamics of condensed proteins in the regulation of cellular processes.

4.
Mater Sci Eng C Mater Biol Appl ; 112: 110891, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409048

ABSTRACT

BSA-capped gold nanoclusters are promising theragnostic systems that can be excited to render both fluorescence emission and reactive oxygen species. Although their synthesis and photoluminescence properties are already well described, more accurate information about their use as photosensitizers is required in order to advance towards health applications. In this work, we have obtained BSA-capped gold nanoclusters and characterized their photophysics by different techniques. Singlet oxygen production was detected upon irradiation, which was enough to produce toxicity on two cell lines. Remarkably, an internal energy transfer, probably due to the presence of smaller nanoclusters and the contribution of oxidized residues of BSA in the system, caused fluorescence emission near 640 nm after excitation in the UV range. Additionally, the system was capable of penetrating human skin beyond the stratum corneum, which enhances the potential of these nanoclusters as bifunctional photodynamic therapy effectors and biomarkers with application in a diversity of skin diseases. In the absence of radiation, BSA-capped gold nanoclusters did not cause toxicity in vitro, while their toxic effect on an in vivo model as zebrafish was determined.


Subject(s)
Gold/chemistry , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Skin/metabolism , Adult , Animals , Cell Line , Cell Survival/drug effects , Female , Humans , Larva/drug effects , Larva/physiology , Nanoparticles/metabolism , Nanoparticles/toxicity , Singlet Oxygen/metabolism , Skin/drug effects , Ultraviolet Rays , Zebrafish/growth & development
5.
J Biol Chem ; 294(21): 8564-8576, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30979722

ABSTRACT

Type 1 diabetes islet cell autoantigen 512 (ICA512/IA-2) is a tyrosine phosphatase-like intrinsic membrane protein involved in the biogenesis and turnover of insulin secretory granules (SGs) in pancreatic islet ß-cells. Whereas its membrane-proximal and cytoplasmic domains have been functionally and structurally characterized, the role of the ICA512 N-terminal segment named "regulated endocrine-specific protein 18 homology domain" (RESP18HD), which encompasses residues 35-131, remains largely unknown. Here, we show that ICA512 RESP18HD residues 91-131 encode for an intrinsically disordered region (IDR), which in vitro acts as a condensing factor for the reversible aggregation of insulin and other ß-cell proteins in a pH and Zn2+-regulated fashion. At variance with what has been shown for other granule cargoes with aggregating properties, the condensing activity of ICA512 RESP18HD is displayed at a pH close to neutral, i.e. in the pH range found in the early secretory pathway, whereas it is resolved at acidic pH and Zn2+ concentrations resembling those present in mature SGs. Moreover, we show that ICA512 RESP18HD residues 35-90, preceding the IDR, inhibit insulin fibrillation in vitro Finally, we found that glucose-stimulated secretion of RESP18HD upon exocytosis of SGs from insulinoma INS-1 cells is associated with cleavage of its IDR, conceivably to prevent its aggregation upon exposure to neutral pH in the extracellular milieu. Taken together, these findings point to ICA512 RESP18HD being a condensing factor for protein sorting and granulogenesis early in the secretory pathway and for prevention of amyloidogenesis.


Subject(s)
Amyloid/metabolism , Insulin/metabolism , Intrinsically Disordered Proteins/metabolism , Nerve Tissue Proteins/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Amyloid/genetics , Animals , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Insulin/genetics , Intrinsically Disordered Proteins/genetics , Nerve Tissue Proteins/genetics , Rats , Receptor-Like Protein Tyrosine Phosphatases, Class 8/genetics , Zinc/metabolism
6.
Biochim Biophys Acta ; 1864(5): 511-22, 2016 May.
Article in English | MEDLINE | ID: mdl-26836020

ABSTRACT

BACKGROUND: ICA512 (or IA-2/PTPRN) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Previous studies implied its involvement in generation, cargo storage, traffic, exocytosis and recycling of insulin secretory granules, as well as in ß-cell proliferation. While several ICA512 domains have been characterized, the function and structure of a large portion of its N-terminal extracellular (or lumenal) region are unknown. Here, we report a biophysical, biochemical, and functional characterization of ICA512-RESP18HD, a domain comprising residues 35 to 131 and homologous to regulated endocrine-specific protein 18 (RESP18). METHODS: Pure recombinant ICA512-RESP18HD was characterized by CD and fluorescence. Its binding to insulin and proinsulin was characterized by ELISA, surface plasmon resonance, and fluorescence anisotropy. Thiol reactivity was measured kinetically. Targeting of ΔRESP18HD ICA512-GFP to the membrane of insulinoma cells was monitored by immunofluorescence. RESULTS: ICA512-RESP18HD possesses a strong tendency to aggregate and polymerize via intermolecular disulfide formation, particularly at pH>4.5. Its cysteine residues are highly susceptible to oxidation forming an intramolecular disulfide between cysteine 53 and 62 and intermolecular disulfides via cysteine 40 and cysteine 47. The regulated sorting of ICA512 to secretory granules in INS-1 cells was impaired by deletion of RESP18HD. ICA512-RESP18HD binds with high-affinity to insulin and proinsulin. CONCLUSIONS: RESP18HD is required for efficient sorting of ICA512 to secretory granules. GENERAL SIGNIFICANCE: RESP18HD is a key determinant for ICA512 granule targeting.


Subject(s)
Insulin/metabolism , Nerve Tissue Proteins/chemistry , Protein Structure, Tertiary/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 8/chemistry , Amino Acid Sequence/genetics , Biophysics , Cell Proliferation/genetics , Humans , Insulin/chemistry , Islets of Langerhans/chemistry , Islets of Langerhans/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroendocrine Cells/chemistry , Neuroendocrine Cells/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Secretory Vesicles/chemistry , Secretory Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...