Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 10: 1039, 2020.
Article in English | MEDLINE | ID: mdl-32766133

ABSTRACT

ALDH is an enzyme involved in different cellular processes, including cancer. It has been shown that a cellular subpopulation with high ALDH activity (ALDHHIGH) within a tumor is related to functional capabilities such as stemness, chemoresistance, and tumorigenicity. However, few studies have focused on determining the mechanisms behind ALDH activity within the cells. Previously, our group reported that ALDHHIGH cells have higher tumorigenicity in Cervical Cancer (CC) cell lines. Based on this, we were interested to know the molecular mediators of the ALDHHIGH cells, specifically ß-catenin, inasmuch as ß-catenin is regulated through different pathways, such as Wnt signaling, and that it acts as a transcriptional co-activator involved in cancer progression. In this work, we show that the increase in ALDHHIGH cell percentage is reverted by ß-catenin knockdown. Consistently, upon GSK3-ß inactivation, a negative regulator of ß-catenin, we observed an increase in ALDHHIGH cells. Additionally, we observed a low percentage of cells positive for Fzd receptor, suggesting that in our model there is a low capacity to respond to Wnt ligands. The analysis of ALDHHIGH cells in a sphere formation model demonstrated the active state of AKT. In accordance with this, impairment of AKT activity not only reduced ß-catenin active state, but also the percentage of ALDHHIGH cells. This corroborates that AKT acts upstream of ß-catenin, thus affecting the percentage of ALDHHIGH cells. In conclusion, our results show that ALDHHIGH cells are dependent on ß-catenin, in spite of the Wnt pathway seems to be dispensable, while AKT emerges as central player supporting a mechanism in this important axis that is not yet well known but its analysis improves our understanding of ALDH activity on CC.

2.
Front Oncol ; 9: 1373, 2019.
Article in English | MEDLINE | ID: mdl-31921637

ABSTRACT

Continuous proliferation of tumor cells requires constant adaptations of energy metabolism to rapidly fuel cell growth and division. This energetic adaptation often comprises deregulated glucose uptake and lactate production in the presence of oxygen, a process known as the "Warburg effect." For many years it was thought that the Warburg effect was a result of mitochondrial damage, however, unlike this proposal tumor cell mitochondria maintain their functionality, and is essential for integrating a variety of signals and adapting the metabolic activity of the tumor cell. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of numerous cellular processes implicated in proliferation, metabolism, and cell growth. mTORC1 controls cellular metabolism mainly by regulating the translation and transcription of metabolic genes, such as peroxisome proliferator activated receptor γ coactivator-1 α (PGC-1α), sterol regulatory element-binding protein 1/2 (SREBP1/2), and hypoxia inducible factor-1 α (HIF-1α). Interestingly it has been shown that mTORC1 regulates mitochondrial metabolism, thus representing an important regulator in mitochondrial function. Here we present an overview on the role of mTORC1 in the regulation of mitochondrial functions in cancer, considering new evidences showing that mTORC1 regulates the translation of nucleus-encoded mitochondrial mRNAs that result in an increased ATP mitochondrial production. Moreover, we discuss the relationship between mTORC1 and glutaminolysis, as well as mitochondrial metabolites. In addition, mitochondrial fission processes regulated by mTORC1 and its impact on cancer are discussed. Finally, we also review the therapeutic efficacy of mTORC1 inhibitors in cancer treatments, considering its use in combination with other drugs, with particular focus on cellular metabolism inhibitors, that could help improve their anti neoplastic effect and eliminate cancer cells in patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...