Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 239: 112060, 2023 02.
Article in English | MEDLINE | ID: mdl-36402588

ABSTRACT

Antioxidant activity toward H2O2, anion radical superoxide, hydroxyl and DPPH (2,2-diphenyl-1-picrylhydrazyl) of two manganese complexes [Mn(III)(bpa)2]Cl.H2O (1) and [(Cl)Mn(µ-hbpclnol)(µ-bpclnol)Mn](ClO4).3H2O (2) (hbpa = (2-hydroxybenzyl-2-pyridylmethyl)amine and h2bpclnol = (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine) are presented. X-ray diffraction studies were performed for complex (1). Both complexes presented similar or better activities than reference complex [Mn(salen)Cl], when the interaction between them and ROS (H2O2, O2•- and •OH), was monitored, by EPR (Electron Paramagnetic Resonance), in PBS, DMSO and water. The antioxidant activity rank of complexes toward •OH, generated by Fenton reaction and monitored by EPR, is (2) > (1) > [Mn(salen)Cl], in water (0.1% of DMSO for each complex), with the values of the IC50 of 7.2 (±1.6), 15.5 (±1.8) and 29.1 (±2.01) µM respectively. EPR data presented herein suggest that complex (2) presents the better scavenging activity toward hydroxyl, being in good agreement with TBARS assay results, in which complex (2) presented the best inhibitory activity toward lipid peroxidation, employing Swiss mice liver homogenate tissue model. IC50 values obtained from the interaction between these complexes and hydroxyl, using TBARS method, were: 0.88 (± 0.029); 0.73 (± 0.01) and 42.7 (± 3.5) nM, respectively for (1), (2) and [Mn(salen)Cl]. Complexes (1) and (2) are regulating the lipid homeostasis, protecting the tissue from the lipid peroxidation, in nanomolar scale, motivating in vivo studies. Redox properties and radical scavenging activity of complexes toward DPPH are non-linear and solvent dependent. Furthermore, the monitoring of antioxidant activity probed by EPR could be a fair and appropriate study to guide more advanced investigations.


Subject(s)
Antioxidants , Manganese , Mice , Animals , Manganese/chemistry , Lipid Peroxidation , Antioxidants/pharmacology , Thiobarbituric Acid Reactive Substances , Dimethyl Sulfoxide , Hydrogen Peroxide , Hydroxyl Radical , Water
2.
J Inorg Biochem ; 239: 112062, 2023 02.
Article in English | MEDLINE | ID: mdl-36403436

ABSTRACT

The interaction between CuII, FeIII and MnII complexes, derived from the ligands 1-[bis(pyridine-2-ylmethyl)amino]-3-chloropropan-2-ol (hpclnol) and bis(pyridine-2-ylmethyl)amine (bpma), and the free radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) and reactive oxygen species (ROS), was investigated by colorimetric and EPR (Electron Paramagnetic Resonance) techniques. A comparison between these results and those reported to [Mn(salen)Cl] or EUK-8 was also addressed. EPR studies allowed us the identification of intermediates species such as superoxide­copper(I) and superoxide­copper(II), a mixed-valence FeIIIFeII species and a 16-line feature attributed to MnIII-oxo-MnIV species. The biomarker malondialdehyde (MDA) was determined by TBARS assay in S. cerevisiae cells, and the determination of the IC50 indicate that the antioxidant activity shown dependence on the metal center (CuII ≈ FeIII > MnII ≈ [Mn(salen)Cl]. The lipid peroxidation attenuation was also investigated in liver homogenates obtained from Swiss mice and the IC50 values were in the nanomolar concentrations. We demonstrated here that all the complexes interact with the free radical DPPH and with ROS (H2O2, O2•- and hydroxyl radical), enhancing the cellular protection against oxidative stress generated by hydroxyl radical, employing two experimental model systems, S. cerevisiae (in vivo) and mouse liver (ex vivo).


Subject(s)
Saccharomyces cerevisiae , Superoxides , Mice , Animals , Saccharomyces cerevisiae/metabolism , Lipid Peroxidation , Reactive Oxygen Species , Hydroxyl Radical , Copper/chemistry , Ferric Compounds , Hydrogen Peroxide , Free Radicals , Superoxide Dismutase/metabolism , Liver/metabolism , Pyridines
SELECTION OF CITATIONS
SEARCH DETAIL
...