Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Evol Biol ; 36(12): 1753-1760, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37584218

ABSTRACT

In social species, group members commonly show substantial similarity in gut microbiome composition. Such similarities have been hypothesized to arise either by shared environmental effects or by host relatedness. However, disentangling these factors is difficult, because group members are often related, and social groups typically share similar environmental conditions. In this study, we conducted a cross-foster experiment under controlled laboratory conditions in group-living Damaraland mole-rats (Fukomys damarensis) and used 16S amplicon sequencing to disentangle the effects of the environment and relatedness on gut microbiome similarity and diversity. Our results show that a shared environment is the main factor explaining gut microbiome similarity, overshadowing any effect of host relatedness. Together with studies in wild animal populations, our results suggest that among conspecifics environmental factors are more powerful drivers of gut microbiome composition similarity than host genetics.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria , RNA, Ribosomal, 16S/genetics , Animals, Wild , Mammals
2.
Anim Microbiome ; 5(1): 9, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765400

ABSTRACT

BACKGROUND: In mammals, the gut microbiota has important effects on the health of their hosts. Recent research highlights that animal populations that live in captivity often differ in microbiota diversity and composition from wild populations. However, the changes that may occur when animals move to captivity remain difficult to predict and factors generating such differences are poorly understood. Here we compare the bacterial gut microbiota of wild and captive Damaraland mole-rats (Fukomys damarensis) originating from a population in the southern Kalahari Desert to characterise the changes of the gut microbiota that occur from one generation to the next generation in a long-lived, social rodent species. RESULTS: We found a clear divergence in the composition of the gut microbiota of captive and wild Damaraland mole-rats. Although the dominating higher-rank bacterial taxa were the same in the two groups, captive animals had an increased ratio of relative abundance of Firmicutes to Bacteroidetes compared to wild animals. The Amplicon Sequence Variants (ASVs) that were strongly associated with wild animals were commonly members of the same bacterial families as those strongly associated with captive animals. Captive animals had much higher ASV richness compared to wild-caught animals, explained by an increased richness within the Firmicutes. CONCLUSION: We found that the gut microbiota of captive hosts differs substantially from the gut microbiota composition of wild hosts. The largest differences between the two groups were found in shifts in relative abundances and diversity of Firmicutes and Bacteroidetes.

3.
Genome Biol ; 24(1): 13, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36683094

ABSTRACT

BACKGROUND: The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. RESULTS: Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. CONCLUSION: Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril.


Subject(s)
Anseriformes , Influenza in Birds , Animals , Transcriptome , Endothelial Cells , Australia
4.
Virus Evol ; 8(2): veac074, 2022.
Article in English | MEDLINE | ID: mdl-36128050

ABSTRACT

Avian influenza A virus (AIV) is ubiquitous in waterfowl and is detected annually at high prevalence in waterfowl during the Northern Hemisphere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detected in the same populations at a high frequency, annually. In order to investigate genetic features associated to the long-term maintenance of common subtypes in migratory ducks, we sequenced 248 H4 viruses isolated across 8 years (2002-9) from mallards (Anas platyrhynchos) sampled in southeast Sweden. Phylogenetic analyses showed that both H4 and N6 sequences fell into three distinct lineages, structured by year of isolation. Specifically, across the 8 years of the study, we observed lineage replacement, whereby a different HA lineage circulated in the population each year. Analysis of deduced amino acid sequences of the HA lineages illustrated key differences in regions of the globular head of hemagglutinin that overlap with established antigenic sites in homologous hemagglutinin H3, suggesting the possibility of antigenic differences among these HA lineages. Beyond HA, lineage replacement was common to all segments, such that novel genome constellations were detected across years. A dominant genome constellation would rapidly amplify in the duck population, followed by unlinking of gene segments as a result of reassortment within 2-3 weeks following introduction. These data help reveal the evolutionary dynamics exhibited by AIV on both annual and decadal scales in an important reservoir host.

5.
Infect Dis (Lond) ; 54(10): 748-759, 2022 10.
Article in English | MEDLINE | ID: mdl-35724266

ABSTRACT

BACKGROUND: The tick-borne bacterium Neoehrlichia mikurensis can cause persistent asymptomatic bloodstream infections, but transfusion-mediated transmission has not been reported. This study aimed to investigate the prevalence of N. mikurensis in blood donors, and recipients of blood components from N. mikurensis-positive donors were traced. METHODS: In 2019 and 2021, 1007 blood donors were recruited. Participants completed a questionnaire and additional blood samples were collected during blood donation. Detection of N. mikurensis was performed by PCR followed by sequencing. Positive donors were interviewed and retested. Look-back was performed on positive donations and on all subsequent donations. RESULTS: N. mikurensis was detected in 7/1006 (0.7%) donors. A total of 380/1005 (38%) donors reported at least one noticed tick bite during the current season. The questionnaire could not detect any differences between negative and positive N. mikurensis-donors. Two of the positive donors were still positive on days 318 and 131 after the index donation, respectively. One donor with persistent N. mikurensis in blood experienced slight fatigue. All other had no symptoms attributable to neoehrlichiosis. Look-back included ten donations and 20 blood components. Eight components were discarded, and 12 recipients of N. mikurensis-positive donations were identified. PCR was negative in seven recipients. Five recipients had died, but their medical records gave no evidence for neoehrlichiosis. CONCLUSIONS: Although N. mikurensis was found in 0.7% of blood donors, transfusion-mediated infection was not detected, despite several recipients being at high risk for severe neoehrlichiosis. The results warrant further studies as well as raised clinical awareness.


Subject(s)
Anaplasmataceae Infections , Anaplasmataceae , Anaplasmataceae/genetics , Blood Donors , DNA , Humans , Sweden/epidemiology
6.
PeerJ ; 10: e13095, 2022.
Article in English | MEDLINE | ID: mdl-35310158

ABSTRACT

Background: The transport and storage of samples in temperatures of minus 80 °C is commonly considered as the gold standard for microbiome studies. However, studies conducting sample collection at remote sites without a reliable cold-chain would benefit from a sample preservation method that allows transport and storage at ambient temperature. Methods: In this study we compare alpha diversity and 16S microbiome composition of 20 fecal sample replicates from Damaraland mole-rats (Fukomys damarensis) preserved in a minus 80 °C freezer and transported on dry ice to freeze-dried samples that were stored and transported in ambient temperature until DNA extraction. Results: We found strong correlations between relative abundances of Amplicon Sequence Variants (ASVs) between preservation treatments of the sample, no differences in alpha diversity measures between the two preservation treatments and minor effects of the preservation treatment on beta diversity measures. Our results show that freeze-drying samples can be a useful method for cost-effective transportation and storage of microbiome samples that yields quantitatively almost indistinguishable results in 16S microbiome analyses as those stored in minus 80 °C.


Subject(s)
Microbiota , Preservation, Biological , Feces , Freeze Drying , Preservation, Biological/methods , Microbiota/genetics , Refrigeration
7.
Front Microbiol ; 11: 608274, 2020.
Article in English | MEDLINE | ID: mdl-33329501

ABSTRACT

Domestic mallards (Anas platyrhynchos domesticus) are traditionally used as a model to investigate infection dynamics and immune responses to low pathogenic avian influenza viruses (LPAIVs) in free-living mallards. However, it is unclear whether the immune response of domestic birds reflects the response of their free-living counterparts naturally exposed to these viruses. We investigated the extent to which the innate humoral immune response was similar among (i) wild-type domestic mallards in primary and secondary infection with LPAIV H4N6 in a laboratory setting (laboratory mallards), (ii) wild-type domestic mallards naturally exposed to LPAIVs in a semi-natural setting (sentinel mallards), and (iii) free-living mallards naturally exposed to LPAIVs. We quantified innate humoral immune function by measuring non-specific natural antibodies (agglutination), complement activity (lysis), and the acute phase protein haptoglobin. We demonstrate that complement activity in the first 3 days after LPAIV exposure was higher in primary-exposed laboratory mallards than in sentinel and free-living mallards. LPAIV H4N6 likely activated the complement system and the acute phase response in primary-exposed laboratory mallards, as lysis was higher and haptoglobin lower at day 3 and 7 post-exposure compared to baseline immune function measured prior to exposure. There were no differences observed in natural antibody and haptoglobin concentrations among laboratory, sentinel, and free-living mallards in the first 3 days after LPAIV exposure. Our study demonstrates that, based on the three innate humoral immune parameters measured, domestic mallards seem an appropriate model to investigate innate immunology of their free-living counterparts, albeit the innate immune response of secondary-LPAIV exposed mallards is a better proxy for the innate immune response in pre-exposed free-living mallards than that of immunologically naïve mallards.

8.
Sci Rep ; 8(1): 14670, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305642

ABSTRACT

Proliferative leg skin lesions have been described in wild finches in Europe although there have been no large-scale studies of their aetiology or epizootiology to date. Firstly, disease surveillance, utilising public reporting of observations of live wild finches was conducted in Great Britain (GB) and showed proliferative leg skin lesions in chaffinches (Fringilla coelebs) to be widespread. Seasonal variation was observed, with a peak during the winter months. Secondly, pathological investigations were performed on a sample of 39 chaffinches, four bullfinches (Pyrrhula pyrrhula), one greenfinch (Chloris chloris) and one goldfinch (Carduelis carduelis) with proliferative leg skin lesions and detected Cnemidocoptes sp. mites in 91% (41/45) of affected finches and from all species examined. Fringilla coelebs papillomavirus (FcPV1) PCR was positive in 74% (23/31) of birds tested: a 394 base pair sequence was derived from 20 of these birds, from all examined species, with 100% identity to reference genomes. Both mites and FcPV1 DNA were detected in 71% (20/28) of birds tested for both pathogens. Histopathological examination of lesions did not discriminate the relative importance of mite or FcPV1 infection as their cause. Development of techniques to localise FcPV1 within lesions is required to elucidate the pathological significance of FcPV1 DNA detection.


Subject(s)
Bird Diseases , Finches , Mites , Papillomaviridae , Papillomavirus Infections , Skin Diseases, Infectious , Animals , Bird Diseases/metabolism , Bird Diseases/parasitology , Bird Diseases/pathology , Bird Diseases/virology , Finches/parasitology , Finches/virology , Papillomavirus Infections/metabolism , Papillomavirus Infections/parasitology , Papillomavirus Infections/pathology , Skin Diseases, Infectious/metabolism , Skin Diseases, Infectious/parasitology , Skin Diseases, Infectious/pathology , Skin Diseases, Infectious/virology , United Kingdom
9.
Virus Evol ; 4(2): vey025, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30151242

ABSTRACT

Influenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently. To better understand the role of waterfowl in the maintenance of these rare subtypes, we sequenced H8-H12 viruses isolated from Mallards (Anas platyrhynchos) from 2002 to 2009. These rare viruses exhibited varying ecological and phylodynamic features. The Eurasian clades of H8 and H12 phylogenies were dominated by waterfowl sequences; mostly viruses sequenced in this study. H11, once believed to be a subtype that infected charadriiformes (shorebirds), exhibited patterns more typical of common virus subtypes. Finally, subtypes H9 and H10, which have maintained lineages in poultry, showed markedly different patterns: H10 was associated with all possible NA subtypes and this drove HA lineage diversity within years. Rare viruses belonging to subtypes H8-H12 were highly reassorted, indicating that these rare subtypes are part of the broader IAV pool. Our results suggest that waterfowl play a role in the maintenance of these rare subtypes, but we recommend additional sampling of non-traditional hosts to better understand the reservoirs of these rare viruses.

10.
Sci Rep ; 8(1): 9096, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29904122

ABSTRACT

Papillomaviruses infect many vertebrates, including birds. Persistent infections by some strains can cause malignant proliferation of cells (i.e. cancer), though more typically infections cause benign tumours, or may be completely subclinical. Sometimes extensive, persistent tumours are recorded-notably in chaffinches and humans. In 2016, a novel papillomavirus genotype was characterized from a duck faecal microbiome, in Bhopal, India; the sixth papillomavirus genotype from birds. Prompted by this finding, we screened 160 cloacal swabs and 968 faecal samples collected from 299 ducks sampled at Ottenby Bird Observatory, Sweden in 2015, using a newly designed real-time PCR. Twenty one samples (1.9%) from six individuals (2%) were positive. Eighteen sequences were identical to the published genotype, duck papillomavirus 1. One additional novel genotype was recovered from three samples. Both genotypes were recovered from a wild strain domestic mallard that was infected for more than 60 days with each genotype. All positive individuals were adult (P = 0.004). Significantly more positive samples were detected from swabs than faecal samples (P < 0.0001). Sample type data suggests transmission may be via direct contact, and only infrequently, via the oral-faecal route. Infection in only adult birds supports the hypothesis that this virus is sexually transmitted, though more work is required to verify this.


Subject(s)
Ducks/virology , Genotyping Techniques , Papillomaviridae/genetics , Papillomavirus Infections , Poultry Diseases , Real-Time Polymerase Chain Reaction , Animals , India , Papillomavirus Infections/genetics , Papillomavirus Infections/transmission , Papillomavirus Infections/veterinary , Papillomavirus Infections/virology , Poultry Diseases/genetics , Poultry Diseases/transmission , Poultry Diseases/virology
11.
Parasit Vectors ; 11(1): 144, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29554947

ABSTRACT

BACKGROUND: Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. RESULTS: We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen "Candidatus Neoehrlichia mikurensis". An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. CONCLUSIONS: We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. "Candidatus Neoehrlichia mikurensis" was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania.


Subject(s)
Bacteria/genetics , Genotype , Ixodidae/microbiology , Neglected Diseases/veterinary , Anaplasmataceae/genetics , Anaplasmataceae/isolation & purification , Anaplasmataceae/pathogenicity , Animals , Bacteria/isolation & purification , Bacteria/pathogenicity , Dogs , Ehrlichia/genetics , Ehrlichia/isolation & purification , Ehrlichia/pathogenicity , Neglected Diseases/epidemiology , Neglected Diseases/microbiology , Rickettsia/genetics , Rickettsia/isolation & purification , Rickettsia/pathogenicity , Romania/epidemiology , Sheep , Tick Infestations/veterinary , Zoonoses/epidemiology , Zoonoses/microbiology
12.
Ticks Tick Borne Dis ; 8(6): 933-935, 2017 10.
Article in English | MEDLINE | ID: mdl-28869191

ABSTRACT

Babesiosis is a severe disease in cattle worldwide. In Europe, the main causative agent of bovine babesiosis is Babesia divergens. In some areas, this species is reported to have declined or even disappeared, and its etiological role overtaken by other piroplasmid species. Moreover, co-infection with other tick-transmitted pathogens can be expected to complicate diagnosis in cattle. Hence, molecular identification of the causative agent of babesiosis should be a priority. Therefore, samples from 71 domestic cattle, 39 with clinical signs of babesiosis and 32 without, from southern Sweden were screened for Babesia spp. and Anaplasma spp. using molecular methods Babesia divergens was detected in 38 of the samples, and Anaplasma phagocytophilum in 17. Co-infections with both pathogens were frequent, occurring in 18% of the animals with a B. divergens infection. The possibility of co-infection should be considered in diagnosis and treatment of bovine babesiosis.


Subject(s)
Babesia/isolation & purification , Babesiosis/epidemiology , Cattle Diseases/epidemiology , Coinfection/veterinary , Ehrlichiosis/epidemiology , Anaplasma phagocytophilum/isolation & purification , Animals , Babesiosis/parasitology , Cattle , Cattle Diseases/microbiology , Cattle Diseases/parasitology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/parasitology , Ehrlichiosis/microbiology , Prevalence , RNA, Bacterial/analysis , RNA, Protozoan/analysis , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 18S/analysis , Real-Time Polymerase Chain Reaction/veterinary , Sweden/epidemiology
13.
Parasitol Res ; 116(8): 2291-2297, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28676905

ABSTRACT

Babesia spp., Theileria spp., and Hepatozoon spp. are tick-transmitted apicomplexan parasites that cause several important diseases in animals. To increase current knowledge about the diversity of tick-transmitted pathogens in Romania, we investigated the occurrence of Babesia spp., Theileria spp., and Hepatozoon spp. in a wide range of tick species infesting animal hosts. We collected 852 ticks from 10 different animal species from 20 counties in Romania. The assessment was based on detection of parasite DNA by PCR. Five different apicomplexan parasite species were detected; among them three different species of Babesia: B. canis, B. microti, and B. ovis. Hepatozoon canis was the most frequently detected parasite, found predominately in Ixodes ricinus ticks collected from domestic dogs. It was also detected in I. ricinus collected from goat, fox, and cat. Furthermore, H. canis was found in Haemaphysalis punctata and Haemaphysalis concinna ticks. In addition, Theileria buffeli was detected in Rhipicephalus bursa ticks collected from cattle.


Subject(s)
Babesia/isolation & purification , Eucoccidiida/isolation & purification , Theileria/isolation & purification , Tick Infestations/veterinary , Ticks/parasitology , Animals , Babesia/genetics , Cats , Cattle , Dogs , Eucoccidiida/genetics , Female , Foxes , Horses , Male , Romania , Sheep , Theileria/genetics , Tick Infestations/parasitology , Turkeys
14.
Parasit Vectors ; 10(1): 155, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28335825

ABSTRACT

BACKGROUND: Tick-borne diseases are of substantial concern worldwide for animals as well as humans. Dogs have been a human companion for millennia, and their significant impact on human life renders disease in dogs to be of great concern. Tick-borne diseases in dogs represent a substantial diagnostic challenge for veterinarians in that clinical signs are often diffuse and overlapping. In addition, co-infections with two or more pathogens enhance this problem further. Molecular methods are useful to disentangle co-infections and to accurately describe prevalence and geographical distribution of tick-borne diseases. At this point, this information is lacking in many areas worldwide. Romania is one such area, where prevalence and distribution of several important pathogens need to be further investigated. To address this, we screened blood samples from 96 sick dogs with molecular methods for eight different pathogens including Babesia spp., Theileria spp., Hepatozoon spp., Anaplasma spp., Ehrlichia spp., "Candidatus Neoehrlichia mikurensis", Mycoplasma spp., and Borrelia spp. RESULTS: As many as 45% (43/96) of the dogs in the study were infected with protozoan parasites. Babesia canis was the most frequent of these (28 infected dogs), whereas Hepatozoon canis was detected in 15% (14/96) and Babesia gibsoni was found in a single sample. Bacterial infection with Mycoplasma spp. occurred in 18% (17/96) of the sampled dogs. Obtained bacterial sequences revealed the occurrence of two species: Mycoplasma canis and "Candidatus Mycoplasma haematoparvum". In several cases co-infection with protozoan parasites and Mycoplasma sp. were detected. All dogs were negative for Anaplasma spp., Ehrlichia spp., "Ca. Neoehrlichia mikurensis", and for Borrelia spp. CONCLUSIONS: The results from the present study reinforce the notion that Babesia canis is an important pathogen in the Romanian dog population. However, more surprisingly, another protozoan species, H. canis, seems to be infecting dogs to a larger extent than previously recognized in Romania. Well-known tick-borne bacterial disease agents such as Anaplasma spp. and Borrelia spp. were not detected. In contrast, less well-studied bacteria such as hemotropic Mycoplasma spp. were detected frequently. Moreover, co-infection might aggravate disease and complicate diagnosis and should be further studied in dogs.


Subject(s)
Bacterial Infections/veterinary , Dog Diseases/epidemiology , Pets , Protozoan Infections, Animal/epidemiology , Tick-Borne Diseases/veterinary , Animals , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Dog Diseases/microbiology , Dog Diseases/parasitology , Dogs , Prevalence , Protozoan Infections, Animal/parasitology , Romania/epidemiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology
15.
R Soc Open Sci ; 3(2): 150633, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26998334

ABSTRACT

The last decade has seen a surge in research on avian influenza A viruses (IAVs), in part fuelled by the emergence, spread and potential zoonotic importance of highly pathogenic virus subtypes. The mallard (Anas platyrhynchos) is the most numerous and widespread dabbling duck in the world, and one of the most important natural hosts for studying IAV transmission dynamics. In order to predict the likelihood of IAV transmission between individual ducks and to other hosts, as well as between geographical regions, it is important to understand how IAV infection affects the host. In this study, we analysed the movements of 40 mallards equipped with GPS transmitters and three-dimensional accelerometers, of which 20 were naturally infected with low pathogenic avian influenza virus (LPAIV), at a major stopover site in the Northwest European flyway. Movements differed substantially between day and night, as well as between mallards returning to the capture site and those feeding in natural habitats. However, movement patterns did not differ between LPAIV infected and uninfected birds. Hence, LPAIV infection probably does not affect mallard movements during stopover, with high possibility of virus spread along the migration route as a consequence.

16.
Appl Environ Microbiol ; 82(4): 1147-1153, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26655759

ABSTRACT

Wild waterfowl are important reservoir hosts for influenza A virus (IAV) and a potential source of spillover infections in other hosts, including poultry and swine. The emergence of highly pathogenic avian influenza (HPAI) viruses, such as H5N1 and H5N8, and subsequent spread along migratory flyways prompted the initiation of several programs in Europe, North America, and Africa to monitor circulation of HPAI and low-pathogenicity precursor viruses (low-pathogenicity avian influenza [LPAI] viruses). Given the costs of maintaining such programs, it is essential to establish best practice for field methodologies to provide robust data for epidemiological interpretation. Here, we use long-term surveillance data from a single site to evaluate the influence of a number of parameters on virus detection and isolation of LPAI viruses. A total of 26,586 samples (oropharyngeal, fecal, and cloacal) collected from wild mallards were screened by real-time PCR, and positive samples were subjected to isolation in embryonated chicken eggs. The LPAI virus detection rate was influenced by the sample type: cloacal/fecal samples showed a consistently higher detection rate and lower cycle threshold (Ct) value than oropharyngeal samples. Molecular detection was more sensitive than isolation, and virus isolation success was proportional to the number of RNA copies in the sample. Interestingly, for a given Ct value, the isolation success was lower in samples from adult birds than in those from juveniles. Comparing the results of specific real-time reverse transcriptase (RRT)-PCRs and of isolation, it was clear that coinfections were common in the investigated birds. The effects of sample type and detection methods warrant some caution in interpretation of the surveillance data.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/diagnosis , Influenza in Birds/epidemiology , Molecular Diagnostic Techniques/methods , Specimen Handling/methods , Virus Cultivation/methods , Animals , Cloaca/virology , Ducks , Feces/virology , Oropharynx/virology , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Sweden
17.
Acta Vet Scand ; 57: 74, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26526188

ABSTRACT

BACKGROUND: Extended spectrum ß-lactamases (ESBLs), a group of enzymes conferring resistance to third generation cephalosporins have rapidly increased in Enterobacteriacae and pose a major challenge to human health care. Resistant isolates are common in domestic animals and clinical settings, but prevalence and genotype distribution varies on a geographical scale. Although ESBL genes are frequently detected in bacteria isolated from wildlife samples, ESBL dissemination of resistant bacteria to the environment is largely unknown. To address this, we used three closely related gull species as a model system and collected more than 3000 faecal samples during breeding times in nine European countries. Samples were screened for ESBL-producing bacteria, which were characterized to the level of ESBL genotype groups (SHV, TEM), or specific genotypes (CTX-M). RESULTS: ESBL-producing bacteria were frequently detected in gulls (906 of 3158 samples, 28.7 %), with significant variation in prevalence rates between countries. Highest levels were found in Spain (74.8 %), The Netherlands (37.8 %) and England (27.1 %). Denmark and Poland represented the other extreme with no, or very few positive samples. Genotyping of CTX-M isolates identified 13 different variants, with bla CTX-M-1 and bla CTX-M-14 as the most frequently detected. In samples from England, Spain and Portugal, bla CTX-M-14 dominated, while in the rest of the sampled countries bla CTX-M-1 (except Sweden where bla CTX-M-15 was dominant) was the most frequently detected genotype, a pattern similar to what is known from studies of human materials. CONCLUSIONS: CTX-M type ESBLs are common in the faecal microbiota from gulls across Europe. The gull ESBL genotype distribution was in large similar to published datasets from human and food-production animals in Europe. The data suggests that the environmental dissemination of ESBL is high from anthropogenic sources, and widespread occurrence of resistant bacteria in common migratory bird species utilizing urban and agricultural areas suggests that antibiotic resistance genes may also be spread through birds.


Subject(s)
Bacteria/genetics , Charadriiformes/microbiology , beta-Lactamases/genetics , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/enzymology , Europe , Feces/microbiology , Genotype
18.
PLoS One ; 10(7): e0133250, 2015.
Article in English | MEDLINE | ID: mdl-26207834

ABSTRACT

Candidatus Neoehrlichia mikurensis (CNM; family Anaplasmataceae) was recently recognized as a potential tick-borne human pathogen. The presence of CNM in mammals, in host-seeking Ixodes ticks and in ticks attached to mammals and birds has been reported recently. We investigated the presence of CNM in ornithophagous ticks from migrating birds. A total of 1,150 ticks (582 nymphs, 548 larvae, 18 undetermined ticks and two adult females) collected from 5,365 birds captured in south-eastern Sweden was screened for CNM by molecular methods. The birds represented 65 different species, of which 35 species were infested with one or more ticks. Based on a combination of morphological and molecular species identification, the majority of the ticks were identified as Ixodes ricinus. Samples were initially screened by real-time PCR targeting the CNM 16S rRNA gene, and confirmed by a second real-time PCR targeting the groEL gene. For positive samples, a 1260 base pair fragment of the 16S rRNA gene was sequenced. Based upon bacterial gene sequence identification, 2.1% (24/1150) of the analysed samples were CNM-positive. Twenty-two out of 24 CNM-positive ticks were molecularly identified as I. ricinus nymphs, and the remaining two were identified as I. ricinus based on morphology. The overall CNM prevalence in I. ricinus nymphs was 4.2%. None of the 548 tested larvae was positive. CNM-positive ticks were collected from 10 different bird species. The highest CNM-prevalences were recorded in nymphs collected from common redpoll (Carduelis flammea, 3/7), thrush nightingale (Luscinia luscinia, 2/29) and dunnock (Prunella modularis, 1/17). The 16S rRNA sequences obtained in this study were all identical to each other and to three previously reported European strains, two of which were obtained from humans. It is concluded that ornithophagous ticks may be infected with CNM and that birds most likely can disperse CNM-infected ticks over large geographical areas.


Subject(s)
Anaplasmataceae/isolation & purification , Birds/parasitology , Ixodes/microbiology , Animal Migration , Animals , DNA, Bacterial/genetics , Disease Vectors , RNA, Ribosomal, 16S/genetics , Sweden
19.
Appl Environ Microbiol ; 81(7): 2378-83, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25616792

ABSTRACT

Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and emerging human IAVs often contain gene segments from avian viruses. The active drug metabolite of oseltamivir (oseltamivir carboxylate [OC]), stockpiled as Tamiflu for influenza pandemic preparedness, is not removed by conventional sewage treatment and has been detected in river water. There, it may exert evolutionary pressure on avian IAV in waterfowl, resulting in the development of resistant viral variants. A resistant avian IAV can circulate among wild birds only if resistance does not restrict viral fitness and if the resistant virus can persist without continuous drug pressure. In this in vivo mallard (Anas platyrhynchos) study, we tested whether an OC-resistant avian IAV (H1N1) strain with an H274Y mutation in the neuraminidase (NA-H274Y) could retain resistance while drug pressure was gradually removed. Successively infected mallards were exposed to decreasing levels of OC, and fecal samples were analyzed for the neuraminidase sequence and phenotypic resistance. No reversion to wild-type virus was observed during the experiment, which included 17 days of viral transmission among 10 ducks exposed to OC concentrations below resistance induction levels. We conclude that resistance in avian IAV that is induced by exposure of the natural host to OC can persist in the absence of the drug. Thus, there is a risk that human-pathogenic IAVs that evolve from IAVs circulating among wild birds may contain resistance mutations. An oseltamivir-resistant pandemic IAV would pose a substantial public health threat. Therefore, our observations underscore the need for prudent oseltamivir use, upgraded sewage treatment, and surveillance for resistant IAVs in wild birds.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza in Birds/virology , Mutation, Missense , Neuraminidase/isolation & purification , Oseltamivir/pharmacology , Viral Proteins/isolation & purification , Amino Acid Substitution , Animals , Ducks , Feces/virology , Influenza A Virus, H1N1 Subtype/drug effects , Mutant Proteins/genetics , Neuraminidase/genetics , Selection, Genetic , Viral Proteins/genetics
20.
Infect Genet Evol ; 29: 129-37, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25461850

ABSTRACT

Multiple infections, or simultaneous infection of a host with multiple parasites, are the rule rather than the exception. Interactions between co-occurring pathogens in a population may be mutualistic, competitive or facilitative. For some pathogen combinations, these interrelated effects will have epidemiological consequences; however this is as yet poorly incorporated into practical disease ecology. For example, screening of Mallards for influenza A viruses (IAV) have repeatedly revealed high prevalence and large subtype diversity in the Northern Hemisphere. Other studies have identified avian paramyxovirus type 1 (APMV-1) and coronaviruses (CoVs) in Mallards, but without making inferences on the larger viral assemblage. In this study we followed 144 wild Mallards across an autumn season in a natural stopover site and constructed infection histories of IAV, APMV-1 and CoV. There was a high prevalence of IAV, comprising of 27 subtype combinations, while APMV-1 had a comparatively low prevalence (with a peak of 2%) and limited strain variation, similar to previous findings. Avian CoVs were common, with prevalence up to 12%, and sequence analysis identified different putative genetic lineages. An investigation of the dynamics of co-infections revealed a synergistic effect between CoV and IAV, whereby CoV prevalence was higher given that the birds were co-infected with IAV. There were no interactive effects between IAV and APMV-1. Disease dynamics are the result of an interplay between parasites, host immune responses, and resources; and is imperative that we begin to include all factors to better understand infectious disease risk.


Subject(s)
Avulavirus/genetics , Bird Diseases/virology , Coronavirus/genetics , Ducks , Influenza A virus/genetics , Animals , Avulavirus/classification , Bird Diseases/immunology , Coinfection/immunology , Coinfection/virology , Coronavirus/classification , Female , Genetic Variation , Influenza A virus/classification , Male , Phylogeny , Prevalence , RNA, Viral/analysis , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...