Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(9): e17344, 2024 May.
Article in English | MEDLINE | ID: mdl-38597332

ABSTRACT

Body size variation is central in the evolution of life-history traits in amphibians, but the underlying genetic architecture of this complex trait is still largely unknown. Herein, we studied the genetic basis of body size and fecundity of the alternative morphotypes in a wild population of the Greek smooth newt (Lissotriton graecus). By combining a genome-wide association approach with linkage disequilibrium network analysis, we were able to identify clusters of highly correlated loci thus maximizing sequence data for downstream analysis. The putatively associated variants explained 12.8% to 44.5% of the total phenotypic variation in body size and were mapped to genes with functional roles in the regulation of gene expression and cell cycle processes. Our study is the first to provide insights into the genetic basis of complex traits in newts and provides a useful tool to identify loci potentially involved in fitness-related traits in small data sets from natural populations in non-model species.


Subject(s)
Body Size , Genome-Wide Association Study , Linkage Disequilibrium , Multifactorial Inheritance , Animals , Multifactorial Inheritance/genetics , Body Size/genetics , Salamandridae/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Genetics, Population , Fertility/genetics , Quantitative Trait Loci
2.
J Comp Physiol B ; 194(1): 1-6, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38296861

ABSTRACT

Migrating birds are often exposed to variable environments and face a multitude of stress exposures along their long-distance flights. During stopover refueling, migratory birds must balance the need to accumulate energy reserves to continue their migration with the need to respond to environmental and physiological stressors. We examined the gene expression patterns of different Heat Shock Proteins (HSPs) in migrating birds during stopover at different body condition states (lean vs. fat), to provide some first insights on the role of HSPs in bird migration and explore the concept of a trade-off between refueling and stress response. Our results showed upregulation of HSP expression at release that could be associated with muscle growth and increased cholesterol and lipid synthesis needed for birds to fuel their upcoming migration. On the other hand, during capture, upregulation of HSP5 could be attributed to physiological recovery from the non-stop endurance flight when crossing the Sahara Desert-Mediterranean Sea ecological barrier. All birds significantly increased their fuel loads up to 48% of lean body mass and we provide evidence for muscle rebuilding during stopover as flight muscle mass increased by 10%, highlighting the fact that stopover sites can play a major role in the physiological recovery of migrants.


Subject(s)
Animal Migration , Passeriformes , Animals , Animal Migration/physiology , Body Composition , Heat-Shock Response/genetics , Passeriformes/physiology
3.
Genome Biol Evol ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-37067540

ABSTRACT

Migration is one of the most energy-demanding tasks in avian life cycle. Many birds might not have sufficient fuel stores to cover long distances, so they must stop to rest and refuel at stopover sites, especially after the crossing of large ecological barriers. There, birds undergo several behavioral, morphological, and physiological trait adjustments to recover from and prepare for their journey; however, regulation of such processes at the molecular level remains largely unknown. In this study, we used transcriptomic information from the whole blood of migrating garden warblers (Sylvia borin) to identify key regulatory pathways related to adaptations for migration. Birds were temporarily caged during spring migration stopover and then sampled twice at different refueling states (lean vs. fat), reflecting different migratory stages (stopover arrival vs. departure) after the crossing of an extended ecological barrier. Our results show that top expressed genes during migration are involved in important pathways regarding adaptations to migration at high altitudes such as increase of aerobic capacity and angiogenesis. Gene expression profiles largely reflected the two experimental conditions with several enzymes involved in different aspects of metabolic activity being differentially expressed between states providing several candidate genes for future functional studies. Additionally, we identified several hub genes, upregulated in lean birds that could be involved in the extraordinary phenotypic flexibility in organ mass displayed by avian migrants. Finally, our approach provides novel evidence that regulation of water homeostasis may represent a significant adaptive mechanism, allowing birds to conserve water during long-distance flight, mainly through protein catabolism.


Subject(s)
Passeriformes , Songbirds , Animals , Songbirds/genetics , Transcriptome , Animal Migration/physiology , Seasons
4.
Mitochondrial DNA B Resour ; 1(1): 72-73, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-33473413

ABSTRACT

The complete mitochondrial genome of the nine-spined stickleback Pungitius pungitius was obtained with Illumina sequencing of genomic DNA. The assembled mitogenome sequence was 16 582 bp long, and the gene number, order and contents were identical to those of other sequenced Pungitius mitogenomes. The complete mitogenome of P. pungitius from its European range can provide an important template for further phylogenetic and population genetic studies of the Pungitius species complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...