Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 9(9): 1212-7, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20683545

ABSTRACT

Multistage electron transfer in a film system consisting of a hole-transporting layer (HTL), donor-acceptor pair (D-A), and an electron-transporting layer (ETL) was studied by photovoltage and flash-photolysis techniques. Poly(3-hexylthiophene) (PHT) was used as the HTL, while a symmetric porphyrin-fullerene dyad (P-F) and perylenetetracarboxidiimide (PTCDI) layers were functioning as the D-A pair and ETL, respectively. The photoexcitation of this three-component film system causes charge separations in the monomolecular P-F film, followed by electron transfer from the PHT polymer film and the fullerene anions to the porphyrin cations and the PTCDI layer, respectively. The final transient state is a charged PHT(+)|P-F|PTCDI(-) system, with significantly increased amplitude and lifetime of the photoelectrical signals compared to previously studied P-F|PTCDI and PHT|P-F systems, due to the its increased charge-separation distance. The study promotes the knowledge on the charge transfer mechanism in multilayered film systems.

2.
Phys Chem Chem Phys ; 12(39): 12525-32, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20721381

ABSTRACT

Photoinduced intra- and intermolecular electron transfer (ET) in thin films of porphyrin-fullerene dyad (P-F) and perylenetetracarboxidiimide (PTCDI) was studied by means of photoelectrical and spectroscopic methods. Films consisting of smooth 100 mol% layers of P-F and PTCDI were prepared by the Langmuir-Schäfer (LS) technique and thermal evaporation, respectively. The time-resolved Maxwell displacement charge (TRMDC) and laser flash-photolysis methods were utilized to demonstrate photoinduced ET from P-F to PTCDI regardless of which chromophore is photoexcited. Finally, the information about the electron movement in the respective thin films was used to build a layered organic solar cell, whose internal quantum yield (Φ(I)) of collected charges was 13%.

3.
Langmuir ; 26(9): 6630-7, 2010 May 04.
Article in English | MEDLINE | ID: mdl-20025208

ABSTRACT

The organization of pi-pi stacking perylenediimide (PDI) derivative, PDI12, was studied in solution and in thin films. Films were prepared with the Langmuir-Schaeffer (LS) method and characterized by means of AFM, optical profilometry, steady-state absorption, emission, fluorescence lifetime, and transient photovoltage measurements. The columnar aggregates observed previously in PDI12 solutions and in spin-coated films persist also in LS films. Because of the specific conditions during the preparation of the LS film, i.e., hydrophobic interactions and lateral compression, the columnar aggregates seem to organize with their long axis perpendicular to the layer plane whereas in spin-coated films the columns were oriented parallel to the layer plane. According to AFM and profilometer results, the thickness of LS monolayer of PDI12 is 10 nm, indicating that it consists mainly of aggregates, each containing approximately 30 monomers. Intermolecular photoinduced energy and electron transfer processes in C(60)|PDI12 double layer junction were studied. The fluorescence lifetime of PDI12 film is exceptionally long, but the quenching is very efficient in the presence of C(60). In charge transfer studies, long-lived photovoltage signal was observed for the double layer. Results of this work indicate that PDI12 acts as an electron acceptor and fullerene C(60) as an electron donor.

SELECTION OF CITATIONS
SEARCH DETAIL
...