Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372954

ABSTRACT

P53 is a critical tumor suppressor that protects the integrity of genome and prevents cells from malignant transformation, including metastases. One of the driving forces behind the onset of metastases is the epithelial to mesenchymal transition (EMT) program. Zeb1 is one of the key transcription factors that govern EMT (TF-EMT). Therefore, the interaction and mutual influence of p53 and Zeb1 plays a critical role in carcinogenesis. Another important feature of tumors is their heterogeneity mediated by the presence of so-called cancer stem cells (CSCs). To this end, we have developed a novel fluorescent reporter-based approach to enrich the population of CSCs in MCF7 cells with inducible expression of Zeb1. Using these engineered cell lines, we studied the effect of p53 on Zeb1 interactomes isolated from both CSCs and regular cancer cells. By employing co-immunoprecipitations followed by mass spectrometry, we found that the composition of Zeb1 interactome was affected not only by the p53 status but also by the level of Oct4/Sox2 expression, indicating that stemness likely affects the specificity of Zeb1 interactions. This study, together with other proteomic studies of TF-EMT interactomes, provides a framework for future molecular analyses of biological functions of Zeb1 at all stages of oncogenesis.


Subject(s)
Breast Neoplasms , Zinc Finger E-box-Binding Homeobox 1 , Humans , Female , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/metabolism , Proteomics , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925224

ABSTRACT

BACKGROUND: Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression. METHODS: To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells. Additionally, we assessed cell chemoresistance, clonogenic, invasive and migratory activity and the data of mRNA-seq and intrinsic disorder predisposition protein analysis (IDPPA). RESULTS: We obtained the line of CSC-like cells selected on the basis of the expression of the OCT4 and SOX2 stem cell factors. The enriched CSC-like subpopulation had increased chemoresistance as well as clonogenic and migration activities. The bioinformatic analysis of mRNA seq data identified the up-regulation of pluripotency, development, drug resistance and phototransduction pathways, and the downregulation of pathways related to proliferation, cell cycle, aging, and differentiation. IDPPA indicated that CSC-like cells are predisposed to increased intrinsic protein disorder. CONCLUSION: The use of the SORE6x reporter construct for CSCs enrichment allows us to obtain CSC-like population that can be used as a model to search for the new prognostic factors and potential therapeutic targets for colon cancer treatment.


Subject(s)
Adenocarcinoma/pathology , Colonic Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Adenocarcinoma/genetics , Adult , Biomarkers, Tumor/isolation & purification , Cell Culture Techniques/methods , Cell Cycle , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colonic Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Middle Aged , Neoplastic Stem Cells/pathology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Primary Cell Culture , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
3.
Cell Mol Life Sci ; 70(19): 3723-37, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23677492

ABSTRACT

Human artificial chromosomes (HACs) are vectors that offer advantages of capacity and stability for gene delivery and expression. Several studies have even demonstrated their use for gene complementation in gene-deficient recipient cell lines and animal transgenesis. Recently, we constructed an advance HAC-based vector, alphoid(tetO)-HAC, with a conditional centromere. In this HAC, a gene-loading site was inserted into a centrochromatin domain critical for kinetochore assembly and maintenance. While by definition this domain is permissive for transcription, there have been no long-term studies on transgene expression within centrochromatin. In this study, we compared the effects of three chromatin insulators, cHS4, gamma-satellite DNA, and tDNA, on the expression of an EGFP transgene inserted into the alphoid(tetO)-HAC vector. Insulator function was essential for stable expression of the transgene in centrochromatin. In two analyzed host cell lines, a tDNA insulator composed of two functional copies of tRNA genes showed the highest barrier activity. We infer that proximity to centrochromatin does not protect genes lacking chromatin insulators from epigenetic silencing. Barrier elements that prevent gene silencing in centrochromatin would thus help to optimize transgenesis using HAC vectors.


Subject(s)
Chromatin/genetics , Chromosomes, Artificial, Human , Genetic Vectors/genetics , Transgenes , Animals , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , DNA, Satellite/genetics , Gene Expression , Gene Silencing , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , RNA, Transfer/genetics
4.
Development ; 130(4): 741-51, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12506004

ABSTRACT

Engrailed is a key transcriptional regulator in the nervous system and in the maintenance of developmental boundaries in Drosophila, and its vertebrate homologs regulate brain and limb development. Here, we show that the functions of both of the Hox cofactors Extradenticle and Homothorax play essential roles in repression by Engrailed. Mutations that remove either of them abrogate the ability of Engrailed to repress its target genes in embryos, both cofactors interact directly with Engrailed, and both stimulate repression by Engrailed in cultured cells. We suggest a model in which Engrailed, Extradenticle and Homothorax function as a complex to repress Engrailed target genes. These studies expand the functional requirements for extradenticle and homothorax beyond the Hox proteins to a larger family of non-Hox homeodomain proteins.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/genetics , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Animals , Body Patterning/genetics , Cells, Cultured , Drosophila/cytology , Drosophila/embryology , Drosophila Proteins/genetics , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Larva , Mutation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Wnt1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...