Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Publication year range
1.
J Leukoc Biol ; 107(2): 285-297, 2020 02.
Article in English | MEDLINE | ID: mdl-31841231

ABSTRACT

Neutrophils are the most abundant leukocytes in blood and disruption in their functions often results in an increased risk of serious infections and inflammatory autoimmune diseases. Following recent discoveries in their influence over disease progression, a resurgence of interest for neutrophil biology has taken place. The multitude of signaling pathways activated by the engagement of numerous types of receptors, with which neutrophils are endowed, reflects the functional complexity of these cells. It is therefore not surprising that there remains a huge lack in the understanding of molecular mechanisms underlining neutrophil functions. Moreover, studies on neutrophils are undoubtedly limited by the difficulty to efficiently edit the cell's genome. Over the past 30 years, compelling evidence has clearly highlighted that Ca2+ -signaling is governing the key processes associated with neutrophil functions. The confirmation of the role of an elevation of intracellular Ca2+ concentration has come from studies on NADPH oxidase activation and phagocytosis. In this review, we give an overview and update of our current knowledge on the role of Ca2+ mobilization in the regulation of pro-inflammatory functions of neutrophils. In particular, we stress the importance of Ca2+ in the formation of NETs and cytokine secretion in the light of newest findings. This will allow us to embrace how much further we have to go to understand the complex dynamics of Ca2+ -dependent mechanisms in order to gain more insights into the role of neutrophils in the pathogenesis of inflammatory diseases. The potential for therapeutics to regulate the neutrophil functions, such as Ca2+ influx inhibitors to prevent autoimmune and chronic inflammatory diseases, has been discussed in the last part of the review.


Subject(s)
Calcium Signaling , Calcium/metabolism , Extracellular Traps/metabolism , Neutrophils/physiology , Animals , Humans , Phagocytosis
2.
Biochem Pharmacol ; 165: 170-180, 2019 07.
Article in English | MEDLINE | ID: mdl-30862503

ABSTRACT

For more than two centuries now, rheumatoid arthritis (RA) is under investigation intending to discover successful treatment. Despite decades of scientific advances, RA is still representing a challenge for contemporary medicine. Current drug therapies allow to improve significantly the quality of life of RA patients; however, they are still insufficient to reverse tissue injury and are often generating side-effects. The difficulty arises from the considerable fluctuation of the clinical course of RA among patients, making the predictive prognosis difficult. More and more studies underline the profound influence of the neutrophil multifaceted functions in the pathogenesis of RA. This renewed interest in the complexity of neutrophil functions in RA offers new exciting opportunities for valuable therapeutic targets as well as for safe and well-tolerated RA treatments. In this review, we aim to update the recent findings on the multiple facets of neutrophils in RA, in particular their impact in promoting the RA-based inflammation through the release of the cytokine-like S100A8/A9 protein complex, as well as the importance of NETosis in the disease progression and development. Furthermore, we delve into the complex question of neutrophil heterogeneity and plasticity and discuss the emerging role of miRNAs and epigenetic markers influencing the inflammatory response of neutrophils in RA and how they could constitute the starting point for novel attractive targets in RA therapy.


Subject(s)
Arthritis, Rheumatoid/etiology , Neutrophils/physiology , Animals , Arthritis, Rheumatoid/immunology , Calgranulin A/physiology , Calgranulin B/physiology , Epigenesis, Genetic , Extracellular Traps/physiology , Humans , MicroRNAs/physiology , NADPH Oxidases/physiology , Reactive Oxygen Species/metabolism
3.
Br J Cancer ; 102(6): 1024-31, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-20197771

ABSTRACT

BACKGROUND: This study evaluates the relation of the early oestrogen-regulated gene gabarapl1 to cellular growth and its prognostic significance in breast adenocarcinoma. METHODS: First, the relation between GABARAPL1 expression and MCF-7 growth rate was analysed. Thereafter, by performing macroarray and reverse transcriptase quantitative-polymerase chain reaction (RT-qPCR) experiments, gabarapl1 expression was quantified in several histological breast tumour types and in a retrospective cohort of 265 breast cancers. RESULTS: GABARAPL1 overexpression inhibited MCF-7 growth rate and gabarapl1 expression was downregulated in breast tumours. Gabarapl1 mRNA levels were found to be significantly lower in tumours presenting a high histological grade, with a lymph node-positive (pN+) and oestrogen and/or progesterone receptor-negative status. In univariate analysis, high gabarapl1 levels were associated with a lower risk of metastasis in all patients (hazard ratio (HR) 4.96), as well as in pN+ patients (HR 14.96). In multivariate analysis, gabarapl1 expression remained significant in all patients (HR 3.63), as well as in pN+ patients (HR 5.65). In univariate or multivariate analysis, gabarapl1 expression did not disclose any difference in metastasis risk in lymph node-negative patients. CONCLUSIONS: Our data show for the first time that the level of gabarapl1 mRNA expression in breast tumours is a good indicator of the risk of recurrence, specifically in pN+ patients.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/diagnosis , Carcinoma, Ductal, Breast/pathology , Microtubule-Associated Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Lymph Nodes/pathology , Lymphatic Metastasis , Microtubule-Associated Proteins/metabolism , Middle Aged , Outcome Assessment, Health Care , Prognosis , Recurrence , Retrospective Studies , Tumor Cells, Cultured , Up-Regulation
4.
Article in English | MEDLINE | ID: mdl-6662762

ABSTRACT

Left ventricular stroke volume (LVSV) falls during obstructed inspiration in animals and normal human subjects through mechanisms that may be closely related to pleural pressure. In this study we postulated that a similar reduction in LVSV should occur in patients with obstructive sleep apnea (OSA). Daytime polysomnograms were performed in 10 patients with OSA. A noninvasive electrical impedance method was used to determine LVSV. Pleural pressure was measured by esophageal balloon. In comparison with awake values, during OSA we found reductions in LVSV, cardiac output, and heart rate of 18, 27, and 11%, respectively (P less than 0.01). We observed that systolic pleural pressure did not have a significant effect on LVSV (P greater than 0.05). However, at pleural pressures lower than 10 cmH2O below resting expiratory level, there was a linear relationship between falls in LVSV and falls in middiastolic pleural pressure (P less than 0.0001). We concluded that reduced LVSV shown in patients with OSA was significantly related to diastolic pleural pressure level. Our findings suggested reduced preload as the most likely mechanism for decreased cardiac output in OSA.


Subject(s)
Cardiac Output , Pleura/physiopathology , Sleep Apnea Syndromes/physiopathology , Stroke Volume , Adult , Diastole , Esophagus/physiopathology , Hemodynamics , Humans , Male , Middle Aged , Pressure , Systole
SELECTION OF CITATIONS
SEARCH DETAIL