Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(16)2023 08 18.
Article in English | MEDLINE | ID: mdl-37626903

ABSTRACT

Vaccines have been hailed as one of the most remarkable medical advancements in human history, and their potential for treating cancer by generating or expanding anti-tumor T cells has garnered significant interest in recent years. However, the limited efficacy of therapeutic cancer vaccines in clinical trials can be partially attributed to the inadequacy of current preclinical mouse models in recapitulating the complexities of the human immune system. In this study, we developed two innovative humanized mouse models to assess the immunogenicity and therapeutic effectiveness of vaccines targeting human papillomavirus (HPV16) antigens and delivering tumor antigens to human CD141+ dendritic cells (DCs). Both models were based on the transference of human peripheral blood mononuclear cells (PBMCs) into immunocompromised HLA-A*02-NSG mice (NSG-A2), where the use of fresh PBMCs boosted the engraftment of human cells up to 80%. The dynamics of immune cells in the PBMC-hu-NSG-A2 mice demonstrated that T cells constituted the vast majority of engrafted cells, which progressively expanded over time and retained their responsiveness to ex vivo stimulation. Using the PBMC-hu-NSG-A2 system, we generated a hyperplastic skin graft model expressing the HPV16-E7 oncogene. Remarkably, human cells populated the skin grafts, and upon vaccination with a DNA vaccine encoding an HPV16-E6/E7 protein, rapid rejection targeted to the E7-expressing skin was detected, underscoring the capacity of the model to mount a vaccine-specific response. To overcome the decline in DC numbers observed over time in PBMC-hu-NSG-A2 animals, we augmented the abundance of CD141+ DCs, the specific targets of our tailored nanoemulsions (TNEs), by transferring additional autologous PBMCs pre-treated in vitro with the growth factor Flt3-L. The Flt3-L treatment bolstered CD141+ DC numbers, leading to potent antigen-specific CD4+ and CD8+ T cell responses in vivo, which caused the regression of pre-established triple-negative breast cancer and melanoma tumors following CD141+ DC-targeting TNE vaccination. Notably, using HLA-A*02-matching PBMCs for humanizing NSG-A2 mice resulted in a delayed onset of graft-versus-host disease and enhanced the efficacy of the TNE vaccination compared with the parental NSG strain. In conclusion, we successfully established two humanized mouse models that exhibited strong antigen-specific responses and demonstrated tumor regression following vaccination. These models serve as valuable platforms for assessing the efficacy of therapeutic cancer vaccines targeting HPV16-dysplastic skin and diverse tumor antigens specifically delivered to CD141+ DCs.


Subject(s)
Cancer Vaccines , Melanoma , Humans , Animals , Mice , Skin Transplantation , Leukocytes, Mononuclear , Hyperplasia , Antibodies , Disease Models, Animal , Antigens, Neoplasm , Dendritic Cells , HLA-A Antigens
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33875601

ABSTRACT

Leukocyte homing driven by the chemokine CCL21 is pivotal for adaptive immunity because it controls dendritic cell (DC) and T cell migration through CCR7. ACKR4 scavenges CCL21 and has been shown to play an essential role in DC trafficking at the steady state and during immune responses to tumors and cutaneous inflammation. However, the mechanism by which ACKR4 regulates peripheral DC migration is unknown, and the extent to which it regulates CCL21 in steady-state skin and lymph nodes (LNs) is contested. Specifically, our previous findings that CCL21 levels are increased in LNs of ACKR4-deficient mice [I. Comerford et al., Blood 116, 4130-4140 (2010)] were refuted [M. H. Ulvmar et al., Nat. Immunol. 15, 623-630 (2014)], and no differences in CCL21 levels in steady-state skin of ACKR4-deficient mice were reported despite compromised CCR7-dependent DC egress in these animals [S. A. Bryce et al., J. Immunol. 196, 3341-3353 (2016)]. Here, we resolve these issues and reveal that two forms of CCL21, full-length immobilized and cleaved soluble CCL21, exist in steady-state barrier tissues, and both are regulated by ACKR4. Without ACKR4, extracellular CCL21 gradients in barrier sites are saturated and nonfunctional, DCs cannot home directly to lymphatic vessels, and excess soluble CCL21 from peripheral tissues pollutes downstream LNs. The results identify the mechanism by which ACKR4 controls DC migration in barrier tissues and reveal a complex mode of CCL21 regulation in vivo, which enhances understanding of functional chemokine gradient formation.


Subject(s)
Cell Movement , Chemokine CCL21/metabolism , Dendritic Cells/physiology , Lymph Nodes/metabolism , Receptors, CCR/metabolism , Animals , Mice, Inbred C57BL
3.
J Immunol ; 206(5): 987-998, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33504616

ABSTRACT

Prophylactic human papillomavirus (HPV) vaccines are commercially available for prevention of infection with cancerogenic HPV genotypes but are not able to combat pre-existing HPV-associated disease. In this study, we designed a nanomaterial-based therapeutic HPV vaccine, comprising manganese (Mn4+)-doped silica nanoparticles (Mn4+-SNPs) and the viral neoantigen peptide GF001 derived from the HPV16 E7 oncoprotein. We show in mice that Mn4+-SNPs act as self-adjuvants by activating the inflammatory signaling pathway via generation of reactive oxygen species, resulting in immune cell recruitment to the immunization site and dendritic cell maturation. Mn4+-SNPs further serve as Ag carriers by facilitating endo/lysosomal escape via depletion of protons in acidic endocytic compartments and subsequent Ag delivery to the cytosol for cross-presentation. The Mn4+-SNPs+GF001 nanovaccine induced strong E7-specific CD8+ T cell responses, leading to remission of established murine HPV16 E7-expressing solid TC-1 tumors and E7-expressing transgenic skin grafts. This vaccine construct offers a simple and general strategy for therapeutic HPV and potentially other cancer vaccines.


Subject(s)
Antigens, Neoplasm/immunology , Manganese/immunology , Nanoparticles/administration & dosage , Neoplasms/immunology , Neoplasms/therapy , Silicon Dioxide/immunology , Adjuvants, Immunologic/pharmacology , Animals , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cells, Cultured , Female , Humans , Immunization/methods , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic , Papillomaviridae/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Polymorphism, Single Nucleotide/immunology , Reactive Oxygen Species/immunology , Signal Transduction/immunology
4.
J Invest Dermatol ; 141(5): 1264-1273.e3, 2021 05.
Article in English | MEDLINE | ID: mdl-33129828

ABSTRACT

High-risk human papillomavirus infection can induce cervical and other intraepithelial neoplasia and invasive cancers. A transgenic mouse expressing keratin 14 promotor-driven HPV16 E7 oncoprotein exhibits epithelial hyperplasia and mimics many features of human papillomavirus-related intraepithelial precancers. We have previously demonstrated that HPV16 E7-mediated epithelial hyperplasia suppresses T helper type 1 responses to intradermally delivered antigen and directs differentiation of CD4+ T cells towards a Foxp3+ regulatory phenotype (Treg). Here we establish that Foxp3+ Treg expansion from a transferred naive T-cell population is driven directly by the hyperplastic skin and is independent of pre-existing immune-modulated lymphocytes. However, depletion of endogenous CD25+ Tregs before priming of adoptively transferred T cells significantly improves antigen-specific CD8+ T-cell responses but not T helper type 1 responses. Deletion of IL-10 had no effect on Treg expansion, epidermal dendritic cell alteration, and suppression of induced T helper type 1 immunity in HPV16 E7-driven hyperplastic mice. Thus, HPV16 E7-mediated epithelial hyperplasia promotes expansion of peripheral Tregs in response to intradermal immunization that suppress antigen-specific CD8+ T-cell responses independently of IL-10, but depletion of these Tregs is not sufficient to restore T helper type 1 immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epithelial Cells/pathology , Interleukin-10/physiology , Papillomavirus E7 Proteins/physiology , T-Lymphocytes, Regulatory/physiology , Animals , Dendritic Cells/immunology , Epithelial Cells/immunology , Female , Homeodomain Proteins/physiology , Hyperplasia , Immune Tolerance , Mice , Mice, Inbred C57BL , Th1 Cells/immunology
5.
Exp Dermatol ; 27(1): 71-79, 2018 01.
Article in English | MEDLINE | ID: mdl-28887852

ABSTRACT

The molecular links between sterile inflammation and induction of adaptive immunity have not been fully identified. Here, we examine how damage-associated molecular patterns (DAMPs), as opposed to pathogen-associated molecules (PAMPs), regulate the immune response to non-self-antigens presented at the site of a physical injury. Heat applied briefly to the skin invokes sterile inflammation, characterized by local cell death and caspase-1 activation without demonstrably disrupting skin integrity. Co-delivery of ovalbumin (OVA) with heat injury induces OVA-specific CD8+ T-cell responses, and this is dependent on caspase-1 activation and MyD88 signalling. Using Id2flox/flox-CD11cCre+ mice, we demonstrate that CD8+ lineage DCs are required to induce OVA-specific CD8+ T-cell responses following heat injury. Consistent with this observation, intradermal administration of CD8+ lineage DCs but not CD11b+ lineage DCs restores priming of CD8+ T-cell responses in Casp-1-/- mice. Thus, we conclude that a sterile injury induces CD8+ T-cell immune responses to local antigen through caspase-1 activation and requires CD8+ lineage DCs, a finding of significance for immunotherapy and for the pathogenesis of autoimmunity.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Dendritic Cells/immunology , Inflammasomes/metabolism , Skin/injuries , Animals , Caspase 1/metabolism , Cell Lineage , Dendritic Cells/cytology , Ear , Inflammation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Differentiation Factor 88/metabolism , Ovalbumin/chemistry , Signal Transduction , Skin Transplantation
6.
J Immunother ; 40(2): 62-70, 2017.
Article in English | MEDLINE | ID: mdl-28166181

ABSTRACT

We have previously shown that a novel DNA vaccine technology of codon optimization and the addition of ubiquitin sequences enhanced immunogenicity of a herpes simplex virus 2 polynucleotide vaccine in mice, and induced cell-mediated immunity when administered in humans at relatively low doses of naked DNA. We here show that a new polynucleotide vaccine using the same technology and encoding a fusion protein of the E6 and E7 oncogenes of high-risk human papillomavirus type 16 (HPV16) is immunogenic in mice. This vaccine induces long-lasting humoral and cell-mediated immunity and protects mice from establishment of HPV16-E7-expressing tumors. In addition, it suppresses growth of readily established tumors and shows enhanced efficacy when combined with immune checkpoint blockade targeted at PD-L1. This vaccine also facilitates rejection of HPV16-E7-expressing skin grafts that demonstrate epidermal hyperplasia with characteristics of cervical and vulvar intraepithelial neoplasia. Clinical studies evaluating the efficacy of this vaccine in patients with HPV16 premalignancies are planned.


Subject(s)
Graft Rejection/immunology , Human papillomavirus 16/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/prevention & control , Animals , Antibodies, Monoclonal/administration & dosage , B7-H1 Antigen/immunology , Cell Growth Processes , Female , Human papillomavirus 16/genetics , Humans , Immunity, Cellular , Immunity, Humoral , Mice , Mice, Inbred C57BL , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/complications , Repressor Proteins/genetics , Skin/metabolism , Skin Transplantation , Uterine Cervical Neoplasms/etiology , Vaccination , Vaccines, DNA
7.
J Physiol ; 546(Pt 3): 789-800, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12563004

ABSTRACT

beta2-Laminin is important for the formation of neuromuscular junctions in vertebrates. Previously, we have inactivated the gene that encodes for beta2-laminin in mice and observed predominantly prejunctional structural defects. In this study, we have used both intra- and extracellular recording methods to investigate evoked neurotransmission in beta2-laminin-deficient mice, from postnatal day 8 (P8) through to day 18 (P18). Our results confirmed that there was a decrease in the frequency of spontaneous release, but no change in the postjunctional response to such release. Analysis of evoked neurotransmission showed an increase in the frequency of stimuli that failed to elicit an evoked postjunctional response in the mutants compared to litter mate controls, resulting in a 50 % reduction in mean quantal content at mutant terminals. Compared to littermate controls, beta2-laminin-deficient terminals showed greater synaptic depression when subjected to high frequency stimulation. Furthermore, the paired pulse ratio of the first two stimuli was significantly lower in beta2-laminin mutant terminals. Statistical analysis of the binomial parameters of release showed that the decrease in quantal content was due to a decrease in the number of release sites without any significant change in the average probability of release. This suggestion was supported by the observation of fewer synaptic vesicle protein 2 (SV2)-positive varicosities in beta2-laminin-deficient terminals and by ultrastructural observations showing smaller terminal profiles and increased Schwann cell invasion in beta2-laminin mutants; the differences between beta2-laminin mutants and wild-type mice were the same at both P8 and P18. From these results we conclude that beta2-laminin plays a role in the early structural development of the neuromuscular junction. We also suggest that transmitter release activity may act as a deterrent to Schwann cell invasion in the absence of beta2-laminin.


Subject(s)
Laminin/deficiency , Nerve Endings/metabolism , Synaptic Transmission/physiology , Action Potentials/physiology , Aging/physiology , Animals , Animals, Newborn/growth & development , Animals, Newborn/physiology , Diaphragm/innervation , Female , Gene Deletion , Laminin/genetics , Male , Mice , Mice, Inbred C57BL , Nerve Endings/ultrastructure , Neural Conduction/physiology , Neuromuscular Junction/physiology , Neuromuscular Junction/ultrastructure , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...