Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576030

ABSTRACT

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Subject(s)
Epigenomics , Neoplasms , Humans , Unsupervised Machine Learning , Cloud Computing , Neoplasms/diagnosis , Neoplasms/genetics , DNA Methylation
2.
Virchows Arch ; 481(4): 647-652, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35622144

ABSTRACT

Precision medicine is entering a new era of digital diagnostics; the availability of integrated digital pathology (DP) and structured clinical datasets has the potential to become a key catalyst for biomedical research, education and business development. In Europe, national programs for sharing of this data will be crucial for the development, testing, and validation of machine learning-enabled tools supporting clinical decision-making. Here, the Swiss Digital Pathology Consortium (SDiPath) discusses the creation of a Swiss Digital Pathology Infrastructure (SDPI), which aims to develop a unified national DP network bringing together the Swiss Personalized Health Network (SPHN) with Swiss university hospitals and subsequent inclusion of cantonal and private institutions. This effort builds on existing developments for the national implementation of structured pathology reporting. Opening this national infrastructure and data to international researchers in a sequential rollout phase can enable the large-scale integration of health data and pooling of resources for research purposes and clinical trials. Therefore, the concept of a SDPI directly synergizes with the priorities of the European Commission communication on the digital transformation of healthcare on an international level, and with the aims of the Swiss State Secretariat for Economic Affairs (SECO) for advancing research and innovation in the digitalization domain. SDPI directly addresses the needs of existing national and international research programs in neoplastic and non-neoplastic diseases by providing unprecedented access to well-curated clinicopathological datasets for the development and implementation of novel integrative methods for analysis of clinical outcomes and treatment response. In conclusion, a SDPI would facilitate and strengthen inter-institutional collaboration in technology, clinical development, business and research at a national and international scale, promoting improved patient care via precision medicine.


Subject(s)
Biomedical Research , Europe , Humans , Machine Learning , Precision Medicine , Switzerland
3.
Alzheimers Dement ; 18(12): 2481-2492, 2022 12.
Article in English | MEDLINE | ID: mdl-35142027

ABSTRACT

Abnormal tau protein aggregates constitute a hallmark of Alzheimer's disease. The mechanisms underlying the initiation of tau aggregation in sporadic neurodegeneration remain unclear. Here we investigate whether a non-human prion can seed tau aggregation. Due to their structural similarity with tau aggregates, we chose Sup35NM yeast prion domain fibrils for explorative tau seedings. Upon in vitro incubation with tau monomers, Sup35NM fibrils promoted the formation of morphologically distinct tau fibril strains. In vivo, intrahippocampal inoculation of Sup35NM fibrils accentuated tau pathology in P301S tau transgenic mice. Thus, our results provide first in vivo evidence for heterotypic cross-species seeding of a neurodegenerative human prion-like protein by a yeast prion. This opens up the conceptual perspective that non-mammalian prions present in the human microbiome could be involved in the initiation of protein misfolding in neurodegenerative disorders, a mechanism for which we propose the term "trans-seeding."


Subject(s)
Alzheimer Disease , Prions , Tauopathies , Mice , Animals , Humans , tau Proteins/metabolism , Prions/metabolism , Alzheimer Disease/metabolism , Tauopathies/pathology , Saccharomyces cerevisiae/metabolism , Mice, Transgenic
4.
EMBO Mol Med ; 13(11): e13714, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34661368

ABSTRACT

Risk stratification of COVID-19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe-Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe-Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID-19 patients. We performed a post-mortem examination of infected lung tissue in deceased COVID-19 patients to determine hFwe-Lose's biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe-Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID-19 patients. In COVID-19 patients with acute lung injury, hFwe-Lose is highly expressed in the lower respiratory tract and is co-localized to areas of cell death. In patients presenting in the early phase of COVID-19 illness, hFwe-Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8-100% and a negative predictive value of 64.1-93.2%. hFwe-Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93-0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D-dimer, C-reactive protein, and neutrophil-lymphocyte ratio), patient age and comorbidities (AUROC of 0.67-0.92). The cell fitness marker, hFwe-Lose, accurately predicts outcomes in COVID-19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID-19 pandemic.


Subject(s)
COVID-19 , Biomarkers , Flowers , Humans , Pandemics , ROC Curve , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
6.
Cancer Cell ; 39(3): 288-293, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33482122

ABSTRACT

The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.


Subject(s)
Neoplasms/genetics , Neoplasms/metabolism , Clinical Decision-Making/methods , Computational Biology/methods , Decision Support Systems, Clinical , Humans , Precision Medicine/methods , Prospective Studies
7.
Brain ; 144(3): 963-974, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33484116

ABSTRACT

Tau is a microtubule stabilizing protein that forms abnormal aggregates in many neurodegenerative disorders, including Alzheimer's disease. We have previously shown that co-expression of fragmented and full-length tau in P301SxTAU62on tau transgenic mice results in the formation of oligomeric tau species and causes severe paralysis. This paralysis is fully reversible once expression of the tau fragment is halted, even though P301S tau expression is maintained. Whereas various strategies to target tau aggregation have been developed, little is known about the long-term consequences of reverted tau toxicity. Therefore, we studied the long-term motor fitness of recovered, formerly paralysed P301SxTAU62on-off mice. To assess the seeding competence of oligomeric toxic tau species, we also inoculated ALZ17 mice with brainstem homogenates from paralysed P301SxTAU62on mice. Counter-intuitively, after recovery from paralysis due to oligomeric tau species expression, ageing P301SxTAU62on-off mice did not develop more motor impairment or tau pathology when compared to heterozygous P301S tau transgenic littermates. Thus, toxic tau species causing extensive neuronal dysfunction can be cleared without inducing seeding effects. Moreover, these toxic tau species also lack long-term tau seeding effects upon intrahippocampal inoculation into ALZ17 mice. In conclusion, tau species can be neurotoxic in the absence of seeding-competent tau aggregates, and mice can clear these tau forms permanently without tau seeding or spreading effects. These observations suggest that early targeting of non-fibrillar tau species may represent a therapeutically effective intervention in tauopathies. On the other hand, the absent seeding competence of early toxic tau species also warrants caution when using seeding-based tests for preclinical tauopathy diagnostics.


Subject(s)
Tauopathies/pathology , tau Proteins/metabolism , tau Proteins/toxicity , Animals , Humans , Mice , Mice, Transgenic
8.
Nat Commun ; 11(1): 5086, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033248

ABSTRACT

Coronavirus Disease 19 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has grown to a worldwide pandemic with substantial mortality. Immune mediated damage has been proposed as a pathogenic factor, but immune responses in lungs of COVID-19 patients remain poorly characterized. Here we show transcriptomic, histologic and cellular profiles of post mortem COVID-19 (n = 34 tissues from 16 patients) and normal lung tissues (n = 9 tissues from 6 patients). Two distinct immunopathological reaction patterns of lethal COVID-19 are identified. One pattern shows high local expression of interferon stimulated genes (ISGhigh) and cytokines, high viral loads and limited pulmonary damage, the other pattern shows severely damaged lungs, low ISGs (ISGlow), low viral loads and abundant infiltrating activated CD8+ T cells and macrophages. ISGhigh patients die significantly earlier after hospitalization than ISGlow patients. Our study may point to distinct stages of progression of COVID-19 lung disease and highlights the need for peripheral blood biomarkers that inform about patient lung status and guide treatment.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokines/metabolism , Female , Gene Expression Profiling , Humans , Interferons/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Load
9.
Lung Cancer ; 149: 84-89, 2020 11.
Article in English | MEDLINE | ID: mdl-32980613

ABSTRACT

OBJECTIVES: Tumor mutational burden (TMB) has emerged as a promising predictive biomarker for immune checkpoint inhibitor therapy. While the feasibility of TMB analysis on formalin-fixed paraffin-embedded (FFPE) samples has been thoroughly evaluated, only limited analyses have been performed on cytological samples, and no dedicated study has investigated concordance of TMB between different sample types. Here, we assessed TMB on matched histological and cytological samples from lung cancer patients and evaluated the accuracy of TMB estimation in these sample types. MATERIALS AND METHODS: We analyzed mutations and resulting TMB in FFPE samples and matched ethanol-fixed cytological smears (n = 12 matched pairs) by using a targeted next-generation sequencing assay (Oncomine™ Tumor Mutational Load). Two different variant allele frequency (VAF) thresholds were used to estimate TMB (VAF = 5% or 10%). RESULTS: At 5% VAF threshold, 73% (107/147) of mutations were concordantly detected in matched histological and cytological samples. Discordant variants were mainly unique to FFPE samples (34/40 discordant variants) and mostly C:G > T:A transitions with low allelic frequency, likely indicating formalin fixation artifacts. Increasing the VAF threshold to 10% clearly increased the number of concordantly detected mutations in matched histological and cytological samples to 96% (100/106 mutations), and drastically reduced the number of FFPE-only mutations (from 34 to 4 mutations). In contrast, cytological samples showed consistent mutation count and TMB values at both VAF thresholds. Using FFPE samples, 2 out of 12 patients were classified as TMB-high at VAF cutoff of 5% but TMB-low at 10%, whereas cytological specimens allowed consistent patient classification independently from VAF cutoff. CONCLUSION: Our results show that cytological smears provide more consistent TMB values due to high DNA quality and lack of formalin-fixation induced artifacts. Therefore, cytological samples should be the preferred sample type for robust TMB estimation.


Subject(s)
Lung Neoplasms , Biomarkers, Tumor , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/genetics , Mutation , Tumor Burden
11.
Histopathology ; 77(2): 198-209, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32364264

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a sweeping pandemic. Its major manifestation is in the respiratory tract, and the general extent of organ involvement and the microscopic changes in the lungs remain insufficiently characterised. Autopsies are essential to elucidate COVID-19-associated organ alterations. METHODS AND RESULTS: This article reports the autopsy findings of 21 COVID-19 patients hospitalised at the University Hospital Basel and at the Cantonal Hospital Baselland, Switzerland. An in-corpore technique was performed to ensure optimal staff safety. The primary cause of death was respiratory failure with exudative diffuse alveolar damage and massive capillary congestion, often accompanied by microthrombi despite anticoagulation. Ten cases showed superimposed bronchopneumonia. Further findings included pulmonary embolism (n = 4), alveolar haemorrhage (n = 3), and vasculitis (n = 1). Pathologies in other organ systems were predominantly attributable to shock; three patients showed signs of generalised and five of pulmonary thrombotic microangiopathy. Six patients were diagnosed with senile cardiac amyloidosis upon autopsy. Most patients suffered from one or more comorbidities (hypertension, obesity, cardiovascular diseases, and diabetes mellitus). Additionally, there was an overall predominance of males and individuals with blood group A (81% and 65%, respectively). All relevant histological slides are linked as open-source scans in supplementary files. CONCLUSIONS: This study provides an overview of postmortem findings in COVID-19 cases, implying that hypertensive, elderly, obese, male individuals with severe cardiovascular comorbidities as well as those with blood group A may have a lower threshold of tolerance for COVID-19. This provides a pathophysiological explanation for higher mortality rates among these patients.


Subject(s)
COVID-19/pathology , Capillaries/pathology , Vascular Diseases/pathology , Vascular Diseases/virology , Aged , Aged, 80 and over , Autopsy , Capillaries/virology , Female , Humans , Lung/pathology , Male , Middle Aged , SARS-CoV-2
12.
Cells ; 9(1)2020 01 17.
Article in English | MEDLINE | ID: mdl-31963435

ABSTRACT

The pathogenesis of Parkinson's disease (PD), the second most common neurodegenerative disorder, is complex and involves the impairment of crucial intracellular physiological processes. Importantly, in addition to abnormal α-synuclein aggregation, the dysfunction of various mitochondria-dependent processes has been prominently implicated in PD pathogenesis. Besides the long-known loss of the organelles' bioenergetics function resulting in diminished ATP synthesis, more recent studies in the field have increasingly focused on compromised mitochondrial quality control as well as impaired biochemical processes specifically localized to ER-mitochondria interfaces (such as lipid biosynthesis and calcium homeostasis). In this review, we will discuss how dysregulated mitochondrial crosstalk with other organelles contributes to PD pathogenesis.


Subject(s)
Endoplasmic Reticulum/metabolism , Lysosomes/metabolism , Mitochondria/metabolism , Parkinson Disease/metabolism , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , alpha-Synuclein/genetics , Endoplasmic Reticulum/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Lysosomes/ultrastructure , Mitochondria/enzymology , Mitochondria/genetics , Parkinson Disease/enzymology , Parkinson Disease/etiology , Parkinson Disease/genetics , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Protein Kinases/metabolism , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Ubiquitin-Protein Ligases/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , alpha-Synuclein/metabolism
13.
J Pathol ; 250(1): 19-29, 2020 01.
Article in English | MEDLINE | ID: mdl-31471895

ABSTRACT

In non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) significantly improve overall survival (OS). Tumor mutational burden (TMB) has emerged as a predictive biomarker for patients treated with ICIs. Here, we evaluated the predictive power of TMB measured by the Oncomine™ Tumor Mutational Load targeted sequencing assay in 76 NSCLC patients treated with ICIs. TMB was assessed retrospectively in 76 NSCLC patients receiving ICI therapy. Clinical data (RECIST 1.1) were collected and patients were classified as having either durable clinical benefit (DCB) or no durable benefit (NDB). Additionally, genetic alterations and PD-L1 expression were assessed and compared with TMB and response rate. TMB was significantly higher in patients with DCB than in patients with NDB (median TMB = 8.5 versus 6.0 mutations/Mb, Mann-Whitney p = 0.0244). 64% of patients with high TMB (cut-off = third tertile, TMB ≥ 9) were responders (DCB) compared to 33% and 29% of patients with intermediate and low TMB, respectively (cut-off = second and first tertile, TMB = 5-9 and TMB ≤ 4, respectively). TMB-high patients showed significantly longer progression-free survival (PFS) and OS (log-rank test p = 0.0014 for PFS and 0.0197 for OS). While identifying different subgroups of patients, combining PD-L1 expression and TMB increased the predictive power (from AUC 0.63 to AUC 0.65). Our results show that the TML panel is an effective tool to stratify patients for ICI treatment. A combination of biomarkers might maximize the predictive precision for patient stratification. Our study supports TMB evaluation through targeted NGS in NSCLC patient samples as a tool to predict response to ICI therapy. We offer recommendations for a reliable and cost-effective assessment of TMB in a routine diagnostic setting. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Mutation , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Clinical Decision-Making , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Middle Aged , Molecular Targeted Therapy , Patient Selection , Phenotype , Precision Medicine , Predictive Value of Tests , Reproducibility of Results , Switzerland
15.
J Clin Pathol ; 73(6): 350-352, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31719106

ABSTRACT

Digital pathology including whole slide image (WSI) acquisition is a promising tool for histopathologic teleconsultation. To test and validate the use of WSI in comparison with robotic microscopy for intraoperative frozen section consultation of peripheral hospitals serviced by our department, we compared the VENTANA DP 200 slide scanner with an established remote-controlled digital microscope. Thirty cases were retrospectively analysed. In comparison with a median specimen handling time of 19 min using remote-controlled microscopy, the WSI handling was significantly shorter (11 min, p=0.0089) and offered better image quality, for example, allowing to detect a positive resection margin by a malignant melanoma that had been missed using the former system. Prospectively assessed on 12 cases, the median handling time was 6 min. Here, we demonstrate the applicability and the advantages of WSI for intraoperative frozen section teleconsultation. WSI-based telepathology prooves to be an efficient and reliable tool providing superior turn-around time and image resolution.


Subject(s)
Frozen Sections , Image Processing, Computer-Assisted , Robotic Surgical Procedures , Telepathology , Diagnostic Imaging , Humans , Intraoperative Period , Microscopy , Remote Consultation , Retrospective Studies
16.
Acta Neuropathol ; 138(6): 943-970, 2019 12.
Article in English | MEDLINE | ID: mdl-31456031

ABSTRACT

Granulovacuolar degeneration bodies (GVBs) are membrane-bound vacuolar structures harboring a dense core that accumulate in the brains of patients with neurodegenerative disorders, including Alzheimer's disease and other tauopathies. Insight into the origin of GVBs and their connection to tau pathology has been limited by the lack of suitable experimental models for GVB formation. Here, we used confocal, automated, super-resolution and electron microscopy to demonstrate that the seeding of tau pathology triggers the formation of GVBs in different mouse models in vivo and in primary mouse neurons in vitro. Seeding-induced intracellular tau aggregation, but not seed exposure alone, causes GVB formation in cultured neurons, but not in astrocytes. The extent of tau pathology strongly correlates with the GVB load. Tau-induced GVBs are immunoreactive for the established GVB markers CK1δ, CK1ɛ, CHMP2B, pPERK, peIF2α and pIRE1α and contain a LAMP1- and LIMP2-positive single membrane that surrounds the dense core and vacuole. The proteolysis reporter DQ-BSA is detected in the majority of GVBs, demonstrating that GVBs contain degraded endocytic cargo. GFP-tagged CK1δ accumulates in the GVB core, whereas GFP-tagged tau or GFP alone does not, indicating selective targeting of cytosolic proteins to GVBs. Taken together, we established the first in vitro model for GVB formation by seeding tau pathology in primary neurons. The tau-induced GVBs have the marker signature and morphological characteristics of GVBs in the human brain. We show that GVBs are lysosomal structures distinguished by the accumulation of a characteristic subset of proteins in a dense core.


Subject(s)
Lysosomes/pathology , Neurons/pathology , Tauopathies/pathology , Vacuoles/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Animals , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Cells, Cultured , Disease Models, Animal , Drugs, Chinese Herbal , Female , Humans , Lysosomes/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Tauopathies/metabolism , Vacuoles/metabolism , tau Proteins/genetics
17.
Cancers (Basel) ; 11(8)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374981

ABSTRACT

Despite several treatment options and an initial high response rate to androgen deprivation therapy, the majority of prostate cancers will eventually become castration-resistant in the metastatic stage (mCRPC). Androgen receptor splice variant 7 (ARV7) is one of the best-characterized androgen receptor (AR) variants whose expression in circulating tumor cells (CTCs) has been associated with enzalutamide resistance. ARV7 expression analysis before and during enzalutamide treatment could identify patients requiring alternative systemic therapies. However, a robust test for the assessment of the ARV7 status in patient samples is still missing. Here, we implemented an RT-qPCR-based assay for detection of AR full length (ARFL)/ARV7 expression in CTCs for clinical use. Additionally, as a proof-of-principle, we validated a cohort of 95 mCRPC patients initiating first line treatment with enzalutamide or enzalutamide/metformin within a clinical trial. A total of 95 mCRPC patients were analyzed at baseline of whom 27.3% (26/95) had ARFL+ARV7+, 23.1% (22/95) had ARFL+ARV7-, 23.1% (22/95) had ARFL-ARV7-, and 1.1% (1/95) had ARFL-ARV7+ CTCs. In 11.6% (11/95), no CTCs could be isolated. A total of 25/95 patients had another CTC analysis at progressive disease, of whom 48% (12/25) were ARV7+. Of those, 50% (6/12) were ARV7- and 50% (6/12) were ARV7+ at baseline. Our results show that mRNA analysis of isolated CTCs in mCRPC is feasible and allows for longitudinal endocrine agent response monitoring and hence could contribute to treatment optimization in mCRPC.

18.
Acta Neuropathol Commun ; 7(1): 72, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31064413

ABSTRACT

Tau is a microtubule stabilizing protein that forms aggregates in Alzheimer's disease (AD). Tau derived from AD patients' brains induces tau aggregation in a prion-like manner when injected into susceptible mouse models.Here we investigated whether cerebrospinal fluid (CSF) collected from patients diagnosed with probable AD or mild cognitive impairment (MCI) likely due to AD harbors a prion-like tau seeding potential. CSF was injected intrahippocampally into young P301S tau transgenic mice. CSF obtained from AD or MCI patients increased hippocampal tau hyperphosphorylation and tau tangle formation in these mice at 4 months post-seeding. Tau pathology was also accentuated in the contralateral hippocampus, and in anterior and posterior directions, indicative of spreading.We provide first evidence for in vivo prion-like properties of AD patients' CSF, accelerating tau pathology in susceptible tau transgenic mice. This demonstrates that biologically active tau seeds reach the CSF compartment in AD. Further studies may help to evaluate strain specific properties of CSF derived tau bioseeds, and to assess their diagnostic potential.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Hippocampus/pathology , Protein Aggregation, Pathological/pathology , tau Proteins/administration & dosage , Aged , Aged, 80 and over , Animals , Cognitive Dysfunction/cerebrospinal fluid , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/pathology , Protein Aggregation, Pathological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...