Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 278(Pt 2): 111532, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33130404

ABSTRACT

Mining has changed landscapes locally in northern Fennoscandia and there is an increasing pressure for exploitation of the remaining mineral deposits of the region. Mineral deposits, even if unmined, can strongly influence stream water chemistry, stream biological communities and the ability of organisms to tolerate stressors. Using data sampled from six mining areas with three active (gold and chrome), two closed (gold) and one planned mine (phosphate), we examined how mineral deposits and mining influence water chemistry and diatom and macroinvertebrate communities in subarctic streams in Finnish Lapland. We supplemented the data by additional samples compiled from databases and further assessed how variation in background geological conditions influences bioassessments of the impacts arising from mining. We found that water specific conductivity was elevated in our study streams draining through catchments with a high mineral potential. Mining effects were mainly seen as increased concentration of nitrogen. Influence of mineral deposits was detected in composition of diatom and macroinvertebrate communities, but communities in streams in areas with a high mineral potential were as diverse as those in streams in areas with a low mineral potential. Mining impacts were better detected for diatoms using a reference condition based on sites with a high than low mineral potential, while for macroinvertebrates, the responses were generally less evident, likely because of only minor effects of mining on water chemistry. Community composition and frequencies of occurrence of macroinvertebrate taxa were, however, highly similar between mine-influenced streams and reference streams with a high potential for minerals indicating that the communities are strongly structured by the natural influence of mineral deposits. Incorporating geochemistry into the reference condition would likely improve bioassessments of both taxonomic groups. Replicated monitoring in potentially impacted sites and reference sites would be the most efficient framework for detecting environmental impacts in streams draining through mineral-rich catchments.


Subject(s)
Diatoms , Invertebrates , Animals , Biota , Ecosystem , Environmental Monitoring , Mining
2.
Oecologia ; 191(4): 919-929, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31624960

ABSTRACT

Recently, community ecology has emphasized the multi-facetted aspects of biological diversity by linking species traits and the environment. Here, we explored environmental correlates of taxonomically-based and traits-based compositional distances using a comprehensive data set of diatom and macroinvertebrate communities. We also explored the responses of different beta diversity components (i.e., overall beta diversity, turnover, and nestedness) of beta diversity facets (i.e., taxonomically and traits-based beta diversity) to environmental distances. Partial Mantel tests were used to test the relationships between beta diversity and environmental distance (while controlling for spatial distances). Taxonomically-based beta diversity varied much more than traits-based beta diversity, indicating strong functional convergence. We found that taxonomically-based beta diversity was largely driven by the turnover component. However, the nestedness component contributed more to overall traits-based beta diversity than the turnover component. Taxonomically-based beta diversity was significantly correlated with environmental distances for both diatoms and macroinvertebrates. Thus, we found support for the role of environmental filtering as a driver of community dissimilarities of rather different biological groups. However, the strength of these relationships between beta diversity and environmental distances varied depending on the biological group, facet, component, and the way which the environmental variables were selected to calculate the explanatory (distance) matrix. Our results indicated that both taxonomically and traits-based approaches are still needed to better understand patterns and mechanisms affecting the organization of biological communities in streams. This is because different facets of biological communities may be driven by different mechanisms.


Subject(s)
Diatoms , Rivers , Biodiversity , Ecology
3.
Sci Total Environ ; 627: 57-66, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426180

ABSTRACT

Rapid agricultural development has induced severe environmental problems to freshwater ecosystems. In this study, we aimed to examine the structure and environmental determinants of macroinvertebrate assemblages in an agriculture dominated Lake Chaohu Basin, China. A cluster analysis of the macroinvertebrate communities identified four groups of sites that were characterized by significantly different macroinvertebrate species. These four groups of sites had concentric spatial distribution patterns that followed the variation in the environmental conditions from the less anthropogenically disturbed headwaters towards the more anthropogenically disturbed lower reaches of the rivers and the Lake Chaohu. Moreover, taxa richness decreased from the headwaters towards the Lake Chaohu. The increasing practice of agriculture has reduced the abundances and richness of pollution sensitive species while opposite effects on pollution tolerant species. The study identified substrate heterogeneity and nutrient concentrations as the key environmental factors regulating the changes in the macroinvertebrate communities. We propose that particular attentions should be paid to reduce the nutrient enrichment and habitat degradation in the Lake Chaohu Basin and similar agriculture dominated basins.


Subject(s)
Aquatic Organisms/classification , Ecosystem , Environmental Monitoring , Invertebrates/classification , Lakes/chemistry , Agriculture , Animals , Aquatic Organisms/growth & development , Biodiversity , China , Invertebrates/growth & development , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...