Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 14(637): eaaz4028, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35320001

ABSTRACT

Fibrosis is a central pathway that drives progression of multiple chronic diseases, yet few safe and effective clinical antifibrotic therapies exist. In most fibrotic disorders, transforming growth factor-ß (TGF-ß)-driven scarring is an important pathologic feature and a key contributor to disease progression. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two closely related transcription cofactors that are important for coordinating fibrogenesis after organ injury, but how they are activated in response to tissue injury has, so far, remained unclear. Here, we describe NUAK family kinase 1 (NUAK1) as a TGF-ß-inducible profibrotic kinase that is up-regulated in multiple fibrotic organs in mice and humans. Mechanistically, we show that TGF-ß induces a rapid increase in NUAK1 in fibroblasts. NUAK1, in turn, can promote profibrotic YAP and TGF-ß/SMAD signaling, ultimately leading to organ scarring. Moreover, activated YAP and TAZ can induce further NUAK1 expression, creating a profibrotic positive feedback loop that enables persistent fibrosis. Using mouse models of kidney, lung, and liver fibrosis, we demonstrate that this fibrogenic signaling loop can be interrupted via fibroblast-specific loss of NUAK1 expression, leading to marked attenuation of fibrosis. Pharmacologic NUAK1 inhibition also reduced scarring, either when initiated immediately after injury or when initiated after fibrosis was already established. Together, our data suggest that NUAK1 plays a critical, previously unrecognized role in fibrogenesis and represents an attractive target for strategies that aim to slow fibrotic disease progression.


Subject(s)
Adaptor Proteins, Signal Transducing , Protein Kinases , Repressor Proteins , Signal Transduction , Transforming Growth Factor beta , YAP-Signaling Proteins , Adaptor Proteins, Signal Transducing/metabolism , Animals , Fibroblasts/metabolism , Fibrosis , Mice , Protein Kinases/metabolism , Repressor Proteins/metabolism , Transforming Growth Factor beta/metabolism , YAP-Signaling Proteins/metabolism
2.
JCI Insight ; 7(4)2022 02 22.
Article in English | MEDLINE | ID: mdl-35191398

ABSTRACT

Fibrotic diseases account for nearly half of all deaths in the developed world. Despite its importance, the pathogenesis of fibrosis remains poorly understood. Recently, the two mechanosensitive transcription cofactors YAP and TAZ have emerged as important profibrotic regulators in multiple murine tissues. Despite this growing recognition, a number of important questions remain unanswered, including which cell types require YAP/TAZ activation for fibrosis to occur and the time course of this activation. Here, we present a detailed analysis of the role that myofibroblast YAP and TAZ play in organ fibrosis and the kinetics of their activation. Using analyses of cells, as well as multiple murine and human tissues, we demonstrated that myofibroblast YAP and TAZ were activated early after organ injury and that this activation was sustained. We further demonstrated the critical importance of myofibroblast YAP/TAZ in driving progressive scarring in the kidney, lung, and liver, using multiple transgenic models in which YAP and TAZ were either deleted or hyperactivated. Taken together, these data establish the importance of early injury-induced myofibroblast YAP and TAZ activation as a key event driving fibrosis in multiple organs. This information should help guide the development of new antifibrotic YAP/TAZ inhibition strategies.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Gene Expression Regulation , Myofibroblasts/metabolism , Organ Transplantation , Renal Insufficiency, Chronic/genetics , YAP-Signaling Proteins/genetics , Adaptor Proteins, Signal Transducing/biosynthesis , Animals , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Disease Models, Animal , Fibrosis/genetics , Fibrosis/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myofibroblasts/pathology , RNA/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction , Transcription Factors , YAP-Signaling Proteins/biosynthesis
3.
Curr Res Transl Med ; 68(4): 225-236, 2020 11.
Article in English | MEDLINE | ID: mdl-32499177

ABSTRACT

BACKGROUND: Current uncertainties about the similarity between human diseases and their experimental models are hampering the development of new therapies. This is especially the case for diabetic kidney disease (DKD), the most common cause of end-stage kidney disease. To better understand the nature of the commonality between humans and their mouse models, we posed the question: in diabetic kidney disease are transcriptional profiles primarily disease-specific or species-specific? METHODS: We performed a meta-comparison of the glomerular transcriptomic characteristics of 133 human and 66 mouse samples including five human kidney diseases and five mouse models, validating expression patterns of a central node by immunohistochemistry. FINDINGS: Principal component analysis controlled for mouse background, revealed that gene expression changes in glomeruli from humans with DKD are more similar to those of diabetic mice than they are to other human glomerular diseases. This similarity enabled the construction of a discriminatory classifier that distinguishes diabetic glomeruli from other glomerular phenotypes regardless of their species of origin. To identify where the commonality between mice and humans with diabetes lies, networks of maximally perturbed protein interactions were examined, identifying a central role for the epidermal growth factor receptor (EGFR). By immunohistochemical staining, we found EGFR to be approximately doubled in its glomerular expression in both humans and mice. INTERPRETATION: These findings indicate that diabetic mouse models do mimic some of the features of human kidney disease, at least with respect to their glomerular transcriptomic signatures, and they identify EGFR as being a central player in this inter-species overlap.


Subject(s)
Diabetic Nephropathies , Kidney Failure, Chronic , Kidney Glomerulus , Transcriptome , Animals , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/genetics , Disease Models, Animal , ErbB Receptors/metabolism , Humans , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/genetics , Kidney Glomerulus/metabolism , Mice
4.
J Am Soc Nephrol ; 27(10): 3117-3128, 2016 10.
Article in English | MEDLINE | ID: mdl-26961347

ABSTRACT

Like many organs, the kidney stiffens after injury, a process that is increasingly recognized as an important driver of fibrogenesis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are related mechanosensory proteins that bind to Smad transcription factors, the canonical mediators of profibrotic TGF-ß responses. Here, we investigated the role of YAP/TAZ in the matrix stiffness dependence of fibroblast responses to TGF-ß In contrast to growth on a stiff surface, fibroblast growth on a soft matrix led to YAP/TAZ sequestration in the cytosol and impaired TGF-ß-induced Smad2/3 nuclear accumulation and transcriptional activity. YAP knockdown or treatment with verteporfin, a drug that was recently identified as a potent YAP inhibitor, elicited similar changes. Furthermore, verteporfin reduced YAP/TAZ levels and decreased the total cellular levels of Smad2/3 after TGF-ß stimulation. Verteporfin treatment of mice subjected to unilateral ureteral obstruction similarly reduced YAP/TAZ levels and nuclear Smad accumulation in the kidney, and attenuated renal fibrosis. Our data suggest that organ stiffening cooperates with TGF-ß to induce fibrosis in a YAP/TAZ- and Smad2/3-dependent manner. Interference with this YAP/TAZ and TGF-ß/Smad crosstalk likely underlies the antifibrotic activity of verteporfin. Finally, through repurposing of a clinically used drug, we illustrate the therapeutic potential of a novel mechanointerference strategy that blocks TGF-ß signaling and renal fibrogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Kidney/pathology , Phosphoproteins/physiology , Smad2 Protein/physiology , Smad3 Protein/physiology , Transcription Factors/physiology , Transforming Growth Factor beta/physiology , Acyltransferases , Animals , Cell Cycle Proteins , Fibrosis/etiology , Male , Mice , Mice, Inbred C57BL , Signal Transduction , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...