Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Trop ; 194: 53-61, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30898614

ABSTRACT

In Latin America, Triatoma infestans is the main vector of the protozoan Trypanosoma cruzi, causal agent of Chagas disease. This blood-sucking triatomine is widely distributed in the Gran Chaco ecoregion, where chemical control has failed because of the evolution of resistance to pyrethroid insecticides. Recently, we described a deltamethrin high resistant focus in Güemes Department (Chaco province) characterized by susceptible populations, populations with low resistance (without field control failures) and some of the populations with the highest resistance level detected. This toxicological heterogeneity could be a result of non-homogenous insecticide pressure and be influenced by environmental factors. The present study evaluated the association of deltamethrin resistance ratios (RR50s) of T. infestans populations with explanatory variables extracted from the WorldClim dataset and constructed from information of National Chagas Program actions during 2005-2015. Control actions were distributed throughout the analyzed period, representing a homogeneous selective pressure. The average percentage of total positive houses was 33.66%. Models that included temperature and precipitation indicators presented 65% explanation. When village size variables where added, the explanatory power reached 70%. This observational result suggests that the climate may favor directly or indirectly the development/selection for resistance, representing a valuable tool to understand the occurrence of resistance that could increase the Chagas disease in the Gran Chaco.


Subject(s)
Chagas Disease/prevention & control , Insecticide Resistance/drug effects , Nitriles/pharmacology , Pyrethrins/pharmacology , Triatoma/drug effects , Trypanosoma cruzi/drug effects , Animals , Argentina , Gene-Environment Interaction , Triatoma/growth & development , Trypanosoma cruzi/physiology
2.
J Med Entomol ; 55(3): 527-533, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29365156

ABSTRACT

The head louse Pediculus humanus capitis (De Geer) (Phthiraptera: Pediculidae) is a cosmopolitan human ectoparasite causing pediculosis, one of the most common arthropod parasitic conditions of humans. The mechanisms and/or chemicals involved in host environment recognition by head lice are still unknown. In this study, we evaluated the response of head lice to volatiles that emanate from the human scalp. In addition, we identified the volatile components of the odor and evaluated the attractive or repellent activity of their pure main components. The volatiles were collected by means of Solid Phase microextraction and the extract obtained was chemically analyzed by gas chromatograph-mass spectrometer. Twenty-four volatile were identified in the human scalp odor, with the main compounds being the following: nonanal, sulcatone, geranylacetone, and palmitic acid. Head lice were highly attracted by the blend human scalp volatiles, as well as by the individual major components. A significant finding of our study was to demonstrate that nonanal activity depends on the mass of the compound as it is repellent at high concentrations and an attractant at low concentrations. The results of this study indicate that head lice may use chemical signals in addition to other mechanisms to remain on the host.


Subject(s)
Chemotaxis , Odorants/analysis , Pediculus/physiology , Scalp/chemistry , Volatile Organic Compounds/metabolism , Animals , Female , Gas Chromatography-Mass Spectrometry , Humans , Male
3.
J Med Entomol ; 53(4): 880-887, 2016 07.
Article in English | MEDLINE | ID: mdl-27113106

ABSTRACT

Chagas disease is one of the most important parasitic infections in Latin America. The main vector of the protozoan Trypanosoma cruzi in America is Triatoma infestans, a blood-sucking triatomine bug who is widely distributed in the Gran Chaco ecoregion. Control programs in endemic countries are focused in the elimination of triatomine vectors with pyrethroid insecticides. However, chemical control has failed in the Gran Chaco over the last two decades because of several factors. Previous studies have reported the evolution of different levels of resistance to deltamethrin in Tri. infestans Recently, very high resistance has been found in the central area of the Argentine Gran Chaco. However, the origin and the extension of this remarkably resistant focus remain unknown. The aim of this study was to evaluate the geographical variation of deltamethrin susceptibility of Tri. infestans in different endemic provinces of Argentina, with emphasis in the center of the Argentine Gran Chaco ecoregion where this main vector has not been reduced. Populations of Mendoza, San Juan, Santiago del Estero, and Tucumán provinces were all susceptible. Resistant populations were only detected in the province of Chaco, where a mosaic resistant focus was described at the Güemes Department. It was characterized into three pyrethroid resistance categories: susceptible, low, and highly resistant populations. We found the populations with the highest resistance levels to deltamethrin, with resistant ratios over 1000.


Subject(s)
Insect Vectors/drug effects , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Triatoma/drug effects , Animals , Argentina , Chagas Disease/prevention & control , Female , Geography , Insect Vectors/physiology , Insecticide Resistance , Nymph/drug effects , Ovum/drug effects , Triatoma/growth & development
4.
J Med Entomol ; 52(5): 1036-42, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26336260

ABSTRACT

In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships.


Subject(s)
DEET , Insecticides , Lice Infestations/prevention & control , Pediculus , Pyrethrins , Animals , Child , Child, Preschool , Environment , Humans , Humidity , Light , Motor Activity/drug effects , Motor Activity/radiation effects , Pediculus/physiology , Temperature
5.
J Med Entomol ; 49(6): 1355-60, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23270163

ABSTRACT

Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae) is the main vector of Chagas disease in the southern cone South America. Chemical control to the vectors appears to be the best option to reduce the incidence of the disease. However, since 2002, high resistance to insecticides that correlated with field control failures was detected in T. infestans from Argentina and Bolivia. In this paper, we analyzed three T. infestans populations whose pyrethroid-resistance had been recently detected, and we defined at least three resistant profiles according to the toxicological and biochemical characteristics of the studied resistant populations. The resistance profiles were identified as Ti-R1, Ti-R2, and Ti-R3, corresponding to the Argentinean Acambuco, and the Bolivians Entre Ríos and Mataral. Ti-R1 exhibited nymphs and eggs with medium resistance level to deltamethrin (RR = 32.5 and 28.6; respectively). Pyrethroid-esterases played a relevant role in deltamethrin resistance. Ti-R2 exhibited nymphs with high resistance to deltamethrin (RR = 173.8) and low resistance to fipronil (RR = 12.4). Pyrethroid-esterases were involved in resistance. Moreover, eggs showed medium resistance level to deltamethrin (RR = 39.1). Ti-R3 had nymphs with low resistance to deltamethrin (RR = 17.4), and medium resistance to fipronil (RR = 66.8). Pyrethroid-esterases showed increased activity, and eggs possessed low resistance to deltamethrin (RR = 8.4). The characterization of the resistance to pyrethroid in these T. infestans populations from Argentina and Bolivia do not permit the generalization of three forms of resistance profile. So far as we appear to know, the forms of mechanisms and their frequencies reported here are selected independently, so additional sites might well show additional combinations of resistance mechanisms and their frequencies.


Subject(s)
Arachnid Vectors , Insecticide Resistance , Insecticides , Triatoma , Animals , Argentina , Bolivia
6.
J Med Entomol ; 47(6): 1077-81, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21175056

ABSTRACT

Chagas disease is a major health concern in Latin America, and Triatoma infestans (Klug, 1834) is responsible for the majority of cases of Chagas disease in the continent. After the discovery of deltamethrin highly resistant populations in the neighboring areas to Yacuiba (Bolivia) and Salvador Mazza (Argentina), we studied T. infestans populations north and southward, with the aim of describing the range of the resistant area. In addition, tests were conducted to describe the susceptibility to fipronil in deltamethrin-resistant populations. Tarija populations were highly resistant to deltamethrin, showing that the resistant area is greater than previously reported. Argentinean and Paraguayan populations were susceptible or presented moderate to low levels of deltamethrin resistance. Resistance to fipronil was found in Bolivian populations, although this insecticide was effective against Argentinean populations. This study shows that the Argentinean and Paraguayan populations are currently under successful control with deltamethrin. However, continuous resistance monitoring is necessary. We found that fipronil is a viable option for Argentina, whereas the resistance found in Bolivia implies that new formulations are needed to control T. infestans in Bolivia. Further research is required to find new alternatives of control in those areas that are currently suffering from high infestation rates.


Subject(s)
Insecticide Resistance , Insecticides/pharmacology , Triatoma/drug effects , Animals
7.
Fitoterapia ; 79(4): 271-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18321657

ABSTRACT

The repetitive and inadequate application of pediculicidal products frequently results in the development of resistance to these compounds. Essential oils are a promising alternative to synthetic insecticides, although their mode of action remains to be explored. It has been proposed that one possible target of the essential oils is the inhibition of acetylcholinesterase (AChE). The role of monoterpenoids as possible AChE inhibitors and their relationship with the toxicity was investigated both in vitro and in vivo. Inhibition of electric eel AChE activity showed that the most effective inhibitor was 1,8-cineole with IC(50) 6 x 10(-3) M. The inhibition of AChE activity of head louse homogenate by 1,8-cineole showed IC(50) 7.7 x 10(-2) M. The intoxication symptoms of head lice exposed to vapors of 1,8-cineole was recorded before the in vivo head louse AChE inhibition assay. No correlation was found between neurotoxic symptoms and inhibition of AChE activity.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Cyclohexanols/pharmacology , Insecticides/pharmacology , Monoterpenes/pharmacology , Phthiraptera/drug effects , Acetylcholinesterase/metabolism , Animals , Cholinesterase Inhibitors/chemistry , Cyclohexanols/chemistry , Dose-Response Relationship, Drug , Electrophorus , Eucalyptol , Insecticides/chemistry , Monoterpenes/chemistry , Time Factors
8.
Med Vet Entomol ; 22(4): 335-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19120961

ABSTRACT

The improper use of pediculicides containing permethrin has led to the development of resistance. Thus, new alternatives for control are needed. Plant-derived insecticides are attractive alternatives to common chemical insecticides because most of them are environmentally friendly and non-toxic to mammals. The toxic activity of 23 monoterpenoids belonging to several chemical classes was tested against the eggs of permethrin-resistant head lice, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae). Significant differences in ovicidal action were observed among the tested substances. The most effective chemicals were hydrocarbons and ethers, followed by ketones, alcohols, phenols and esters. A linear relationship between egg mortality and knockdown time (KT(50)) on adults by the tested components revealed that most of the components were effective on both egg and adult stages. The monoterpenoids described herein are good candidates as effective pediculicides.


Subject(s)
Insecticide Resistance , Insecticides/pharmacology , Monoterpenes/pharmacology , Permethrin/pharmacology , Animals , Molecular Structure , Monoterpenes/chemistry , Phthiraptera
SELECTION OF CITATIONS
SEARCH DETAIL
...