Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Phys ; 10(1): 38, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37322376

ABSTRACT

BACKGROUND: This study evaluated, as a snapshot, the variability in quantification and image quality (IQ) of the clinically utilized PET [18F]FDG whole-body protocols in Finland using a NEMA/IEC IQ phantom permanently filled with 68Ge. METHODS: The phantom was imaged on 14 PET-CT scanners, including a variety of models from two major vendors. The variability of the recovery coefficients (RCmax, RCmean and RCpeak) of the hot spheres as well as percent background variability (PBV), coefficient of variation of the background (COVBG) and accuracy of corrections (AOC) were studied using images from clinical and standardized protocols with 20 repeated measurements. The ranges of the RCs were also compared to the limits of the EARL 18F standards 2 accreditation (EARL2). The impact of image noise on these parameters was studied using averaged images (AVIs). RESULTS: The largest variability in RC values of the routine protocols was found for the RCmax with a range of 68% and with 10% intra-scanner variability, decreasing to 36% when excluding protocols with suspected cross-calibration failure or without point-spread-function (PSF) correction. The RC ranges of individual hot spheres in routine or standardized protocols or AVIs fulfilled the EARL2 ranges with two minor exceptions, but fulfilling the exact EARL2 limits for all hot spheres was variable. RCpeak was less dependent on averaging and reconstruction parameters than RCmax and RCmean. The PBV, COVBG and AOC varied between 2.3-11.8%, 9.6-17.8% and 4.8-32.0%, respectively, for the routine protocols. The RC ranges, PBV and COVBG were decreased when using AVIs. With AOC, when excluding routine protocols without PSF correction, the maximum value dropped to 15.5%. CONCLUSION: The maximum variability of the RC values for the [18F]FDG whole-body protocols was about 60%. The RC ranges of properly cross-calibrated scanners with PSF correction fitted to the EARL2 RC ranges for individual sphere sizes, but fulfilling the exact RC limits would have needed further optimization. RCpeak was the most robust RC measure. Besides COVBG, also RCs and PVB were sensitive to image noise.

2.
Clin Exp Immunol ; 191(3): 301-310, 2018 03.
Article in English | MEDLINE | ID: mdl-29105068

ABSTRACT

Sjögren's syndrome (SS) is a common autoimmune disease targeting salivary and lacrimal glands. It is strongly female-dominant, characterized by low oestrogen levels combined with a local intracrine dihydrotestosterone defect. We hypothesized that these hormonal deficits lead to increased apoptosis of the epithelial cells and plasmacytoid dendritic cell (pDC)-mediated proinflammatory host responses. Expression of Toll-like receptors (TLRs)-7 and -9 and cytokine profiles was studied in pDCs treated with apoptotic particles collected in consecutive centrifugation steps of media from apoptotic cells. Expression and localization of SS autoantigens in these particles was also analysed. Furthermore, the effects of sex steroids were studied in pDCs cultured with several concentrations of dihydrotestosterone and 17-ß-oestradiol, and in saliva of patient treated with dehydroepiandrosterone. Apoptosis of the epithelial cells led to cleavage and translocation of SS-autoantigens, α-fodrin and SS-A, into apoptotic particles. The apoptosis-induced apoptotic particles also contained another SS-autoantigen, hy1-RNA. These particles were internalized by pDCs in a size-dependent manner and affected TLR-7 and -9 expression and the production of proinflammatory cytokines. The analysed androgens protected cells from apoptosis, influenced redistribution of autoantigens and diminished the apoptotic particle-stimulated increase of the TLRs in pDCs. Our findings suggest that the formation of apoptotic particles may play a role in loss of immune tolerance, manifested by production of autoantibodies and the onset of autoinflammation in SS.


Subject(s)
Carrier Proteins/metabolism , Dendritic Cells/immunology , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Microfilament Proteins/metabolism , Ribonucleoproteins/metabolism , Salivary Glands/pathology , Sjogren's Syndrome/immunology , Adult , Aged , Apoptosis , Carrier Proteins/immunology , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Dihydrotestosterone/metabolism , Epithelial Cells/immunology , Estrogens/metabolism , Extracellular Vesicles/immunology , Female , Humans , Immune Tolerance , Inflammation Mediators/metabolism , Male , Microfilament Proteins/immunology , Middle Aged , Salivary Glands/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Young Adult
3.
Eur J Nucl Med Mol Imaging ; 34(10): 1683-92, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17661031

ABSTRACT

PURPOSE: The new GE Discovery STE and Discovery VCT respectively combine 16-slice and 64-slice CT with PET. The PET scanner has a new BGO detector block of 8 x 6 matrix (6.3 x 4.7 x 30 mm(3)). The aim of this study was to test the performance of the new scanner. METHODS: The PET performance evaluation was done using NEMA methodology. Owing to improved front-end electronics, the system was tested with different energy window and coincidence timing settings. RESULTS: Transaxial resolution FWHM for 2D(3D) mode at 1 cm offset from the centre of the field of view (R1) was 4.87 mm (5.12 mm) and at 10 cm off centre (R10) radially 5.70 mm (5.89 mm) and tangentially 5.84 mm (5.47 mm). The axial resolutions were 4.4 mm (5.18 mm) (R1) and 5.99 mm (5.86 mm) (R10). The sensitivities were 2.3 cps/kBq (8.8 cps/kBq) (R0, centre of field of view) and 2.3 cps/kBq (8.9 cps/kBq) (R10). The system scatter fraction was 21.4% in 2D at an energy of 375 keV (33.9% in 3D mode at a higher energy of 425 keV). Peak noise equivalent count rates (k=1) were 84.9 kcps at 43.9 kBq/ml (2D) and 67.6 kcps at 12.1 kBq/ml (3D). In image quality measurement the hot sphere to background contrast with 10- to 22-mm diameter spheres varied from 14% to 68%, being slightly better in 3D than in 2D mode. Cold sphere contrast was 67% in 2D and 59% in 3D mode. CONCLUSION: GE's new STE and VCT PET/CT systems have improved spatial resolution without loss in sensitivity. When compared with the LYSO crystal-based GE Discovery RX, the resolution and scatter fraction are comparable, the count rate capability is lower but the sensitivity is higher.


Subject(s)
Image Enhancement/instrumentation , Positron-Emission Tomography/instrumentation , Subtraction Technique/instrumentation , Tomography, X-Ray Computed/instrumentation , Equipment Design , Equipment Failure Analysis , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
4.
J Clin Microbiol ; 42(12): 5731-8, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15583306

ABSTRACT

The phylogeny of 12 Campylobacter species and reference strains of Arcobacter butzleri and Helicobacter pylori was studied based on partial 593-bp groEL gene sequences. The topology of the phylogenetic neighbor-joining tree based on the groEL gene was similar to that of the tree based on the 16S rRNA gene. However, groEL was found to provide a better resolution for Campylobacter species, with lower interspecies sequence similarities (range, 65 to 94%) compared with those for the 16S rRNA gene (range, 90 to 99%) and high intraspecies sequence similarities (range, 95 to 100%; average, 99%). A new universal reverse primer that amplifies a 517-bp fragment of the groEL gene was developed and used for PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of 68 strains representing 11 Campylobacter species as well as reference strains of A. butzlerii and H. pylori. Digestion with the AluI enzyme discriminated all Campylobacter species included in the study but showed more intraspecies diversity than digestion with the ApoI enzyme. A hippurate-negative variant of Campylobacter jejuni with a high level of groEL sequence similarity to both C. jejuni (96%) and C. coli (94%) gave a unique AluI profile and an ApoI profile identical to those of other C. jejuni strains. In conclusion, groEL gene sequencing and PCR-RFLP analysis are recommended as valuable tools for the identification of Campylobacter species.


Subject(s)
Campylobacter/classification , Chaperonin 60/genetics , Phylogeny , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Animals , Bacterial Typing Techniques , Campylobacter/genetics , Campylobacter jejuni/classification , Campylobacter jejuni/genetics , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Genes, Bacterial , Genes, rRNA , Humans , Molecular Sequence Data , RNA, Ribosomal, 16S , Sequence Analysis, DNA
5.
Eur J Nucl Med ; 28(4): 450-6, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11357494

ABSTRACT

Muscle blood flow has been shown to be heterogeneous at the voxel by voxel level in positron emission tomography (PET) studies using oxygen-15 labelled water. However, the limited spatial resolution of the imaging device does not allow direct measurement of true vascular flow heterogeneity. Fractal dimension (D) obtained by fractal analysis describes the relationship between the relative dispersion and the size of the region studied, and has been used for the assessment of perfusion heterogeneity in microvascular units. This study was undertaken to evaluate fractal characteristics of PET perfusion data and to estimate perfusion heterogeneity in microvascular units. Skeletal muscle blood flow was measured in healthy subjects using [15O]water PET and the fractal characteristics of blood flow in resting and exercising skeletal muscle were analysed. The perfusion heterogeneity in microvascular units was estimated using the measured heterogeneity (relative dispersion, RD = SD/mean) and D values. Heterogeneity due to methodological factors was estimated with phantoms and subtracted from the flow data. The number of aggregated voxels was inversely correlated with RD both in phantoms (Pearson r = -0.96-0.97) and in muscle (Pearson r = -0.94) when both parameters were expressed using a logarithmic scale. Fractal dimension was similar between exercising (1.13) and resting (1.14) muscles and significantly lower than the values in the phantoms with different activity levels (1.27-1.29). Measured flow heterogeneity values were 20% +/- 6% (exercise) and 27% +/- 5% (rest, P < 0.001), whereas estimated flow heterogeneity values in microvascular units (1 mm3) were 35% +/- 14% (exercise) and 49% +/- 14% (rest, P < 0.01). In conclusion, these results show that it is feasible to apply fractal analysis to PET perfusion data. When microvascular flow heterogeneity is estimated using fractals, perfusion appears to be more heterogeneous in microvascular units than when obtained by routine spatial analysis of PET data. Analysis of flow heterogeneity using PET and fractals could provide new insight into physiological conditions and diseases associated with changes in peripheral vascular function.


Subject(s)
Muscle, Skeletal/blood supply , Muscle, Skeletal/diagnostic imaging , Adult , Algorithms , Exercise/physiology , Fractals , Humans , Image Processing, Computer-Assisted , Male , Microcirculation/diagnostic imaging , Models, Anatomic , Perfusion , Regional Blood Flow/physiology , Tomography, Emission-Computed
6.
Am J Physiol Endocrinol Metab ; 279(5): E1122-30, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11052968

ABSTRACT

Quantitative 2-[(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG) positron emission tomography (PET) has been widely used to calculate glucose utilization in skeletal muscle. FDG-PET results depend partly on the lumped constant (LC), which accounts for the differences in the transport and phosphorylation between [(18)F]FDG and glucose. In this study, we estimated the LC for [(18)F]FDG directly in normal and in insulin-resistant obese subjects by combining FDG PET with the microdialysis technique. Eight obese [age 29.4 +/- 1.0 yr, body mass index (BMI) 33.6 +/- 1.0 kg/m(2)] and eight nonobese (age 25.0 +/- 1.0 yr, BMI 23.1 +/- 1.0 kg/m(2)) males were studied during euglycemic hyperinsulinemia (1 mU. kg(-1).min(-1) for 150 min). Muscle blood flow was measured using (15)O-labeled water and PET. Muscle [(18)F]FDG uptake (rGU(FDG)) was calculated with Patlak graphic analysis. Interstitial glucose concentration of the quadriceps femoris muscle was measured simultaneously with [(18)F]FDG scanning using microdialysis. Muscle glucose uptake (by microdialysis, rGU(MD)) was calculated by multiplying glucose extraction by regional muscle blood flow. A significant correlation was found between rGU(MD) and rGU(FDG) (r = 0.78, P < 0.01). The LC was determined as the ratio of the rGU(FDG) to the rGU(MD). The LC averaged 1.16 +/- 0.16 and was similar in the obese and nonobese subjects (1.15 +/- 0.11 vs. 1.16 +/- 0.07, respectively, not significant). In conclusion, the microdialysis technique can be reliably combined with FDG PET to measure glucose uptake in skeletal muscle. Direct measurements with these two independent techniques suggest an LC value of 1.2 for [(18)F]FDG in human skeletal muscle during insulin stimulation, and the LC appears not to be sensitive to insulin resistance.


Subject(s)
Fluorine Radioisotopes , Fluorodeoxyglucose F18 , Muscle, Skeletal/metabolism , Obesity/metabolism , Radiopharmaceuticals , Blood Glucose/analysis , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Glucose Clamp Technique , Humans , Insulin/blood , Insulin Resistance , Kinetics , Microdialysis , Muscle, Skeletal/blood supply , Phosphorylation , Radiopharmaceuticals/metabolism , Tomography, Emission-Computed
7.
J Clin Invest ; 101(5): 1156-62, 1998 Mar 01.
Article in English | MEDLINE | ID: mdl-9486987

ABSTRACT

We tested the hypothesis that endothelium-dependent vasodilatation is a determinant of insulin resistance of skeletal muscle glucose uptake in human obesity. Eight obese (age 26+/-1 yr, body mass index 37+/-1 kg/m2) and seven nonobese males (25+/-2 yr, 23+/-1 kg/m2) received an infusion of bradykinin into the femoral artery of one leg under intravenously maintained normoglycemic hyperinsulinemic conditions. Blood flow was measured simultaneously in the bradykinin and insulin- and the insulin-infused leg before and during hyperinsulinemia using [15O]-labeled water ([15O]H2O) and positron emission tomography (PET). Glucose uptake was quantitated immediately thereafter in both legs using [18F]- fluoro-deoxy-glucose ([18F]FDG) and PET. Whole body insulin-stimulated glucose uptake was lower in the obese (507+/-47 mumol/m2 . min) than the nonobese (1205+/-97 micromol/m2 . min, P < 0.001) subjects. Muscle glucose uptake in the insulin-infused leg was 66% lower in the obese (19+/-4 micromol/kg muscle . min) than in the nonobese (56+/-9 micromol/kg muscle . min, P < 0.005) subjects. Bradykinin increased blood flow during hyperinsulinemia in the obese subjects by 75% from 16+/-1 to 28+/-4 ml/kg muscle . min (P < 0.05), and in the normal subjects by 65% from 23+/-3 to 38+/-9 ml/kg muscle . min (P < 0.05). However, this flow increase required twice as much bradykinin in the obese (51+/-3 microg over 100 min) than in the normal (25+/-1 mug, P < 0.001) subjects. In the obese subjects, blood flow in the bradykinin and insulin-infused leg (28+/-4 ml/kg muscle . min) was comparable to that in the insulin-infused leg in the normal subjects during hyperinsulinemia (24+/-5 ml/kg muscle . min). Despite this, insulin-stimulated glucose uptake remained unchanged in the bradykinin and insulin-infused leg (18+/-4 mumol/kg . min) compared with the insulin-infused leg (19+/-4 micromol/kg muscle . min) in the obese subjects. Insulin-stimulated glucose uptake also was unaffected by bradykinin in the normal subjects (58+/-10 vs. 56+/-9 micromol/kg . min, bradykinin and insulin versus insulin leg). These data demonstrate that obesity is characterized by two distinct defects in skeletal muscle: insulin resistance of cellular glucose extraction and impaired endothelium-dependent vasodilatation. Since a 75% increase in blood flow does not alter glucose uptake, insulin resistance in obesity cannot be overcome by normalizing muscle blood flow.


Subject(s)
Bradykinin/pharmacology , Glucose/metabolism , Insulin Resistance , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Adult , Animals , Blood Flow Velocity , Blood Glucose/analysis , Fluorodeoxyglucose F18 , Humans , Hyperinsulinism/metabolism , Insulin/blood , Insulin/pharmacology , Male , Obesity/metabolism , Thigh/blood supply , Tomography, Emission-Computed , Vasodilation/drug effects , Water/pharmacology
8.
J Clin Invest ; 100(4): 777-85, 1997 Aug 15.
Article in English | MEDLINE | ID: mdl-9259575

ABSTRACT

We tested the hypothesis that defects in insulin stimulation of skeletal muscle blood flow, flow dispersion, and coupling between flow and glucose uptake contribute to insulin resistance of glucose uptake in non-insulin-dependent diabetes mellitus (NIDDM). We used positron emission tomography combined with [15O]H2O and [18F]-2-deoxy--glucose and a Bayesian iterative reconstruction algorithm to quantitate mean muscle blood flow, flow heterogeneity, and their relationship to glucose uptake under normoglycemic hyperinsulinemic conditions in 10 men with NIDDM (HbA1c 8.1+/-0.5%, age 43+/-2 yr, BMI 27.3+/-0.7 kg/m2) and in 7 matched normal men. In patients with NIDDM, rates of whole body (35+/-3 vs. 44+/-3 micromol/kg body weight.min, P < 0.05) and femoral muscle (71+/-6 vs. 96+/-7 micromol/kg muscle.min, P < 0.02) glucose uptake were significantly decreased. Insulin increased mean muscle blood flow similarly in both groups, from 1.9+/-0.3 to 2.8+/-0.4 ml/100 g muscle.min in the patients with NIDDM, P < 0.01, and from 2.3+/-0.3 to 3.0+/-0.3 ml/100 g muscle.min in the normal subjects, P < 0.02. Pixel-by-pixel analysis of flow images revealed marked spatial heterogeneity of blood flow. In both groups, insulin increased absolute but not relative dispersion of flow, and insulin-stimulated but not basal blood flow colocalized with glucose uptake. These data provide the first evidence for physiological flow heterogeneity in human skeletal muscle, and demonstrate that insulin increases absolute but not relative dispersion of flow. Furthermore, insulin redirects flow to areas where it stimulates glucose uptake. In patients with NIDDM, these novel actions of insulin are intact, implying that muscle insulin resistance can be attributed to impaired cellular glucose uptake.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/physiopathology , Insulin/pharmacology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Adult , Humans , Insulin/blood , Male , Middle Aged , Regional Blood Flow/drug effects , Tomography, Emission-Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...