Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Foods ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731761

ABSTRACT

Understanding the correlation between straightforward analytical methods and sensory attributes is pivotal for transitioning to sustainable packaging while improving product quality. In this context, the viability of eco-sustainable packaging alternatives for single-packaged croissants has been investigated through examining the correlations between analytical methods, sensory attributes, employing quantitative descriptive analysis (QDA), and consumer survival analysis. The performance of biaxially oriented polypropylene (BOPP), a petrochemical plastic film, against paper-based, compostable, and biodegradable films over a 150-day croissant storage period was compared in this study, examining both physiochemical and sensory perspectives. The results showed a correlation between a lower water vapour barrier in packaging materials and increased moisture migration and croissant hardness, as assessed by the Avrami kinetic model. Notably, given its reduced barrier properties, the compostable film accelerated sensory profile deterioration, as evidenced by QDA results. Shelf-life estimation, assessed by consumer rejection, underscored the viability of the biodegradable film for up to 185 days, surpassing BOPP, paper-based, and other biodegradable alternatives. Using linear regression, physiochemical parameters associated with predicted shelf-life were elucidated. Overall, croissants were rejected by 50% of consumers when they reached humidity levels below 18%, water activity below 0.81, firmness exceeding 1064 N, pH above 4.4, and acidity below 4.5. Based on the results of this study, biodegradable packaging emerges as a promising alternative to traditional BOPP, offering a sustainable opportunity to extend the shelf-life of croissants.

2.
Foods ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672855

ABSTRACT

In the wake of the United Nations' Agenda 2030, a global commitment to advancing well-being, sustainable living, and waste reduction, the spotlight on cereal-based food products with high added value has intensified [...].

3.
Foods ; 12(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36832931

ABSTRACT

In recent years, there has been a growing interest in a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) as a promising therapeutic approach to reduce the symptoms associated with irritable bowel syndrome (IBS). Hence, the development of low FODMAPs products is an important challenge for the food industry, and among the various foodstuffs associated with the intake of FODMAPs, cereal-based products represent an issue. In fact, even if their content in FODMAPs is limited, their large use in diet can be an important factor in developing IBS symptoms. Several useful approaches have been developed to reduce the FODMAPs content in processed food products. Accurate ingredient selection, the use of enzymes or selected yeasts, and the use of fermentation steps carried out by specific lactic bacteria associated with the use of sourdough represent the technical approaches that have been investigated, alone or in combination, to reduce the FODMAPs content in cereal-based products. This review aims to give an overview of the technological and biotechnological strategies applicable to the formulation of low-FODMAPs products, specifically formulated for consumers affected by IBS. In particular, bread has been the foodstuff mainly investigated throughout the years, but information on other raw or processed products has also been reported. Furthermore, taking into account the required holistic approach for IBS symptoms management, in this review, the use of bioactive compounds that have a positive impact on reducing IBS symptoms as added ingredients in low-FODMAPs products is also discussed.

4.
Food Chem ; 405(Pt A): 134703, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36351313

ABSTRACT

Hydrophobic Deep Eutectic Solvents (HDESs) represent a novel kind of solvent. While several studies investigated their properties, just a few dealt with their use for extracting and recovering bioactive compounds from raw materials, wastes and by-products, even if HDESs might represent an interesting alternative when producing pharmaceuticals, foodstuffs and cosmetics. Furthermore, their use may contribute to realizing more sustainable green processes. This review focuses on HDESs, with particular emphasis on Natural HDESs, discussing their properties and uses, highlighting their role as extractants in food applications, both from an analytical and processing point of view, and underlining the positive and negative aspects. While of prospective interest, currently the use of HDESs at industrial level remains a challenge, with several aspects needing further investigation. In order to scale-up the process, more research should focus on key issues, such as solute recovery, solvent recycling and extraction yields, as well as potential health hazards.


Subject(s)
Deep Eutectic Solvents , Food , Prospective Studies , Solvents/chemistry , Hydrophobic and Hydrophilic Interactions
5.
Foods ; 11(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35954123

ABSTRACT

The development of fortified healthy pleasant foods, in which saturated fats are replaced with unsaturated ones, poses a challenge for the food industry due to their susceptibility to oxidative rancidity, which decreases product shelf-life, causes the destruction of health-promoting molecules, and forms potentially toxic compounds. A comparative study applying the Arrhenius model was carried out to investigate the oxidative stability and predict the shelf-life of a newly developed no added sugar chocolate spread formulated with sunflower oil, and fortified with vitamin D, Mg, and Ca checked against two commercially available spreads: No Palm and a well-known commercially available product (RB). The results obtained from the accelerated shelf-life testing for peroxide value (PV) showed relatively higher activation energy (Ea, 14.48 kJ/mol K) for RB, whereas lower Ea (11.31-12.78 kJ/mol K) was obtained for No Palm and all the experimental spread chocolates. Q10 values were comparable (1.202-1.154), indicating a similar catalytic effect of the temperature upon the oxidation rate across all the investigated samples. The positive Gibbs free energies ranged from 75.014 to 83.550 kJ/mol and pointed out that the lipid oxidation reaction in the chocolate spread was an endergonic process. The predicted shelf-life at 293.15 K was 8.57 months (RB), 7 months (No Palm), and 6.8 months for all the experimental spreadable chocolate. However, the higher production of hydroperoxides was observed in chocolate fortified with magnesium-calcium carbonate nanoparticles and stored at 313.15 and 323.15 K, suggesting these particles may enhance lipid oxidation.

6.
Food Chem ; 384: 132621, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35257999

ABSTRACT

In this study, 40% of unmalted gluten free (GF) grains (sorghum, millet, buckwheat, quinoa and amaranth) was used in brewing process, in gelatinized and ungelatinized form, in order to produce GF beer and to extend current knowledge about their suitability as brewing adjuncts. Partial replacement of barley malt with GF grains led to a significant decrease of extract (°P) and alcohol (%v/v) content compared to control beer (p < 0.05), except for quinoa beer (QB). Results from Principal Component Analysis (PCA) highlighted a satisfactory classification of experimental beers according to the two different forms of GF grains (gelatinized and ungelatinized). However, beers brewed with ungelatinized grains (mainly sorghum and quinoa) showed acceptable technological and sensory properties, thus suggesting that the pre-gelatinization step could be bypassed with a view to more environmentally and economically sustainable time-saving process. In addition, all beer samples showed a gluten content higher than 20 ppm.


Subject(s)
Chenopodium quinoa , Fagopyrum , Sorghum , Beer/analysis , Edible Grain/chemistry , Fermentation , Glutens/analysis
7.
Foods ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36613312

ABSTRACT

Bread is one of the most widely embraced food products and is highly accepted by consumers. Despite being rich in complex carbohydrates (i.e., starch), bread is generally poor in other micro- and macronutrients. Rising consumer demand for healthier food has resulted in the growth of studies focused on bread fortification with bioactive ingredients (i.e., vitamins, prebiotics, and vegetable extracts). However, the baking process leads to the reduction (or even lessening) of the added substance. In addition, the direct inclusion of bioactive compounds and additives in bread has other limitations, such as adverse effects on sensory characteristics and undesirable interaction with other food ingredients. Encapsulation allows for overcoming these drawbacks and at the same time improves the overall quality and shelf-life of bread by controlling the release, protection, and uniform distribution of these compounds. In the last ten years, several studies have shown that including micro/nano-encapsulated bioactive substances instead of free compounds allows for the enrichment or fortification of bread, which can be achieved without negatively impacting its physicochemical and textural properties. This review aims to identify and highlight useful applications in the production of new functional bread through encapsulation technology, summarizing the heath benefit and the effect of microcapsule inclusion in dough and bread from a technological and sensory point of view.

8.
Foods ; 10(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34441587

ABSTRACT

The lentil seed coat is a waste by-product still rich in phenolic compounds, specifically condensed tannins. The effect of different solvents, as well as different processes, namely conventional solid-liquid extraction (CSLE) and ultrasound-assisted extraction (UAE), on the extraction yield of specific phenolic compound classes was studied. Four empirical two-parameter models were examined to select the one that better fit the experimental data obtained under different operating conditions. Additionally, ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-ESI/QTOF-MS) was employed to profile the phenolic compounds obtained under distinct extraction conditions. In the operative conditions adopted here, the bioactive compounds yield achieved using UAE was lower than that obtained with CSLE. The kinetics of polyphenols, flavonoids, and condensed tannins extraction from the lentil seed coat were successfully fitted to the power-law models, yielding mean values of the root mean square < 5.4%, standard error of estimation < 0.53, and coefficient of determination > 0.8. In addition, the UHPLC-ESI/QTOF-MS of the lentil seed coat extracts allowed the putative recognition of nearly 500 compounds, mainly flavonoids and phenolic acids.

9.
Food Chem ; 364: 130386, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34175633

ABSTRACT

Vitamin D and magnesium-calcium carbonate nanoparticles were used to fortify a newly developed healthy chocolate spread formulated with inulin and maltitol as sugar replacers and alternative to palm oil to reduce the concentration of saturated fatty acid. These samples were compared with well-known commercially available chocolate spreads in terms of rheology, polyphenols content and in vitro digestion, sensory attributes and willingness to buy. The fortified chocolate spreads showed comparable if not better acceptability than the current products on the market and over 80% of the participants were inclined to buy and 66% prepared to spend 10 to 15% more money on the product enriched with the three micronutrients. The results also demonstrate that the incorporation of nanoparticles could affect the rheological and physio-chemical properties of the formulations and an appropriate ratio between the fat phase and particles seems an important factor to consider.


Subject(s)
Cacao , Chocolate , Carbohydrates , Humans , Micronutrients , Sugars
10.
Foods ; 10(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920590

ABSTRACT

The nutritional quality of animal products is strongly related to their fatty acid content and composition. Nowadays, attention is paid to the possibility of producing healthier foods of animal origin by intervening in animal feed. In this field, the use of condensed tannins as dietary supplements in animal nutrition is becoming popular due to their wide range of biological effects related, among others, to their ability to modulate the rumen biohydrogenation and biofortify, through the improvement of the fatty acids profile, the derivate food products. Unfortunately, tannins are characterized by strong astringency and low bioavailability. These disadvantages could be overcome through the microencapsulation in protective matrices. With this in mind, the optimal conditions for microencapsulation of a polyphenolic extract rich in condensed tannins by spray drying using a blend of maltodextrin (MD) and gum Arabic (GA) as shell material were investigated. For this purpose, after the extract characterization, through spectrophotometer assays and ultra-high-performance liquid chromatography-quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry, a central composite design (CCD) was employed to investigate the combined effects of core:shell and MD:GA ratio on the microencapsulation process. The results obtained were used to develop second-order polynomial regression models on different responses, namely encapsulation yield, encapsulation efficiency, loading capacity, and tannin content. The formulation characterized by a core:shell ratio of 1.5:5 and MD:GA ratio of 4:6 was selected as the optimized one with a loading capacity of 17.67%, encapsulation efficiency of 76.58%, encapsulation yield of 35.69%, and tannin concentration of 14.46 g/100 g. Moreover, in vitro release under varying pH of the optimized formulation was carried out with results that could improve the use of microencapsulated condensed tannins in animal nutrition for the biofortification of derivates.

11.
Foods ; 10(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401782

ABSTRACT

Grape pomace powder (GPP), a by-product from the winemaking process, was used to substitute flour for wheat bread fortification within 0, 5, and 10 g/100 g. Rheological properties of control and fortified doughs, along with physicochemical and nutritional characteristics, antioxidant activity, and the sensory analysis of the obtained bread were considered. The GPP addition influenced the doughs' rheological properties by generating more tenacious and less extensible products. Concerning bread, pH values and volume of fortified products decreased as the GPP inclusion level increased in the recipe. Total phenolic compounds and the antioxidant capacity of bread samples, evaluated by FRAP (ferric reducing ability of plasma) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) assays, increased with GPP addition. Moreover, the GPP inclusion level raised the total dietary fiber content of bread. Regarding sensory evaluation, GPP fortification had a major impact on the acidity, the global flavor, the astringency, and the wine smell of bread samples without affecting the overall bread acceptability. The current results suggest that GPP could be an attractive ingredient used to obtain fortified bread, as it is a source of fiber and polyphenols with potentially positive effects on human health.

12.
J Sci Food Agric ; 101(5): 1920-1925, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-32898294

ABSTRACT

BACKGROUND: Pasta is a staple food that is consumed worldwide and is an excellent product for the addition of ingredients rich in bioactive compounds. The fortification of pasta with such compounds could represent a healthy choice for consumers. RESULTS: In this study, fresh pasta was formulated by replacing durum wheat semolina with 0, 5, 10, and 15 g 100 g-1 of dried Moringa oleifera leaf powder (MOLP), rich in fibers, minerals, and antioxidant compounds. Increasing levels of MOLP influenced the technological and nutritional properties of wheat-based fresh pasta. Moringa oleifera reduced the optimum cooking time, the swelling index and firmness, while increasing the cooking loss and adhesiveness. From a nutritional viewpoint, the inclusion of MOLP enhanced the phenol content, the antioxidant activity, and the mineral content of fresh pasta. The products obtained had good sensorial acceptability and can make several nutritional claims due to MOLP richness minerals. CONCLUSIONS: The fortification of fresh pasta with MOLP could represent a valuable strategy to increase the nutritional value of the product, preserving pasta technological properties without affecting sensory acceptability. © 2020 Society of Chemical Industry.


Subject(s)
Flour/analysis , Food Additives/chemistry , Food, Fortified/analysis , Moringa oleifera/chemistry , Plant Preparations/chemistry , Triticum/chemistry , Food Additives/metabolism , Food Handling , Humans , Moringa oleifera/metabolism , Nutritive Value , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Preparations/metabolism , Powders , Taste , Triticum/metabolism
13.
Foods ; 9(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283860

ABSTRACT

Hypercholesterolemia, which is an increase in total and low-density lipoprotein (LDL) serum cholesterol, is an important risk factor for the development of cardiovascular diseases. Lifestyle modifications underpin any action plan for reducing serum cholesterol. Phytosterols are natural compounds belonging to the triterpenes family. Thanks to their structural analogy with cholesterol, phytosterols have the ability to reduce serum LDL-cholesterol levels. Phytosterols are used to enrich or fortify a broad spectrum of food products. Like unsaturated fatty acids and cholesterol, phytosterols are easily oxidized. Microencapsulation could be a useful tool to overcome this and other drawbacks linked to the use of phytosterols in food fortification. In this review, in addition to explaining the phytosterols' mechanisms of action, a focus on the use of free and encapsulated phytosterols for the formulation of functional foods, taking also into account both technological and legislative issues, is given.

14.
Foods ; 9(3)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204341

ABSTRACT

In this study, fortified pasta was prepared by replacing semolina with 0, 5, and 10 g/100 g of grape pomace (GP), a food industry by-product, rich in fiber and phenols. GP inclusion in pasta significantly reduced its optimum cooking time and the swelling index, while also increasing the cooking loss (p < 0.05). Furthermore, pasta firmness and adhesiveness were enhanced by the GP addition, as well as the total phenol content and the antioxidant activity, evaluated through ABTS and FRAP assays (p < 0.05). From a nutritional point of view, increasing amounts of GP resulted in a significative decrease in the rapidly digestible starch and an increase in the slowly digestible starch, while the predicted in vitro glycemic index was also reduced (p < 0.05). Sensory analysis showed that fortified spaghetti had good overall acceptability, and the results suggest that GP-fortified pasta could represent a healthy product with good technological and sensory properties.

15.
Food Res Int ; 116: 1274-1281, 2019 02.
Article in English | MEDLINE | ID: mdl-30716916

ABSTRACT

Phytosterols were microencapsulated by spray drying in a shell represented by WPI, inulin and chitosan at four different combinations through the formulation of aqueous suspensions. Moreover, two concentrations of Tween 80 (1.25% and 2.50% w/w) and two inlet temperatures (125 °C and 155 °C) were tested. The effect of the different experimental conditions on the process yield and on the microcapsules properties was evaluated. A significant effect of all variables on the microcapsule properties was found. Accordingly, the best performance, with the maximum loading capacity of 25%, was obtained by using only WPI as shell material, Tween 80 at 1.25% and inlet temperature of 155 °C. The process was successfully scaled-up from laboratory equipment to a semi-technical scale keeping the optimal shell formulation and process conditions.


Subject(s)
Capsules/chemical synthesis , Drug Compounding/methods , Functional Food/analysis , Phytosterols/chemistry , Chitosan/chemistry , Desiccation/methods , Inulin/chemistry , Oxidation-Reduction , Particle Size , Phytosterols/pharmacology , Polysorbates , Suspensions/chemistry , Temperature , Whey Proteins/chemistry , Whey Proteins/isolation & purification
16.
Food Funct ; 9(2): 1265-1273, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29393325

ABSTRACT

Chocolate is one of the most consumed delicacies in the world. Nowadays high-cocoa polyphenol-rich chocolates, probiotic chocolates, and prebiotic chocolates are getting more attention. In light of this, dark chocolate containing microencapsulated phytosterols (MPs) has been developed to reduce cholesterol in individuals. In particular, different dark chocolates containing 64, 72 and 85% of cocoa, fortified with 0, 5, 10 and 15% MP have been produced. The obtained chocolates were characterized by a particle size distribution lower than 30 µm and were stable from a chemical point of view. Specifically, peroxide values were always lower than 2 meq O2 per kg of fat, also after three months of storage. The bioaccessibility of phytosterols was comparable with literature values and the antioxidant activity reached a value of 92 µg trolox per g chocolate for samples obtained from 85% of cocoa. Moreover, sensory evaluation demonstrated a positive effect on the acceptability of the functional chocolate produced and a significant effect of the information on the final sample acceptability.


Subject(s)
Chocolate/analysis , Food Additives/metabolism , Food, Fortified/analysis , Phytosterols/metabolism , Adult , Drug Compounding , Female , Food Additives/chemistry , Humans , Male , Phytosterols/chemistry , Taste , Young Adult
17.
Int J Food Sci Nutr ; 67(8): 888-918, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27387656

ABSTRACT

Many nutritional experts and food scientists are interested in developing functional foods containing bioactive agents and many of these health-promoting ingredients may benefit from nano/micro-encapsulation technology. Encapsulation has been proven useful to improve the physical and the chemical stability of bioactive agents, as well as their bioavailability and efficacy, enabling their incorporation into a wide range of formulations aimed to functional food production. There are several reviews concerning nano/micro-encapsulation techniques, but none are focused on the incorporation of the bioactive agents into food matrices. The aim of this paper was to investigate the development of microencapsulated food, taking into account the different bioactive ingredients, the variety of processes, techniques and coating materials that can be used for this purpose.


Subject(s)
Functional Food/analysis , Animals , Biological Availability , Food Technology/methods , Health Promotion , Humans , Micronutrients/administration & dosage , Micronutrients/pharmacokinetics , Nanocapsules/administration & dosage , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...