Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Anim Ecol ; 90(10): 2254-2267, 2021 10.
Article in English | MEDLINE | ID: mdl-33844844

ABSTRACT

Global pollinator declines as a result of emerging infectious diseases are of major concern. Managed honeybees Apis mellifera are susceptible to numerous parasites and pathogens, many of which appear to be transmissible to sympatric non-Apis taxa. The ectoparasitic mite Varroa destructor is considered to be the most significant threat to honeybees due to its role in vectoring RNA viruses, particularly Deformed wing virus (DWV). Vector transmission of DWV has resulted in the accumulation of high viral loads in honeybees and is often associated with colony death. DWV has two main genotypes, A and B. DWV-A was more prevalent during the initial phase of V. destructor establishment. In recent years, the global prevalence of DWV-B has increased, suggesting that DWV-B is better adapted to vector transmission than DWV-A. We aimed to determine the role vector transmission plays in DWV genotype prevalence at a colony level. We experimentally increased or decreased the number of V. destructor mites in honeybee colonies, and tracked DWV-A and DWV-B loads over a period of 10 months. Our results show that the two DWV genotypes differ in their response to mite numbers. DWV-A accumulation in honeybees was positively correlated with mite numbers yet DWV-A was largely undetected in the absence of the mite. In contrast, colonies had high loads of DWV-B even when mite numbers were low. DWV-B loads persisted in miticide-treated colonies, indicating that this genotype has a competitive advantage over DWV-A irrespective of mite numbers. Our findings suggest that the global increase in DWV-B prevalence is not driven by selective pressure by the vector. Rather, DWV-B is able to persist in colonies at higher viral loads relative to DWV-A in the presence and absence of V. destructor. The interplay between V. destructor and DWV genotypes within honeybee colonies may have broad consequences upon viral diversity in sympatric taxa as a result of spillover.


Subject(s)
RNA Viruses , Varroidae , Animals , Bees
2.
Sci Rep ; 11(1): 6557, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753841

ABSTRACT

In a wind tunnel we compared the colour preference for western flower thrips to four types of colour plates (clear, white, blue and yellow) applied with two types of glue (diffuse Stikem versus clear D41). Further the results for blue and yellow preference were validated in two greenhouses. In the wind tunnel, we found a clear preference of yellow over blue when a clear glue (D41) was used. However, with a more diffuse (whitish) glue (Stikem) the preference for yellow over blue disappeared, whereby the attraction to yellow decreased (58%) while the attraction to blue increased (65%). In the greenhouses, we found similar effects as in the wind tunnel with a decrease in attraction to yellow (35%) and increase in attraction to blue (32%) for Stikem compared to D41. Light measurements showed an increase of 18% of blue, 21% of violet light, 8% of yellow and 9% of green light reflected on the yellow Stikem trap versus the yellow D41 trap. On blue plates there was only 4% increase of blue light, 8% decrease of yellow light reflected when Stikem glue was used compared to D41 glue. It is not yet clear if the change of light reflection ratio blue/yellow caused by the glue type plays a role in the change of attraction. The reflective properties of glue are so far an unknown factor in colour choice and may explain partially the different results on colour preference. A small review on thrips colour preference is discussed to determine possible other factors of influence on colour choice.

SELECTION OF CITATIONS
SEARCH DETAIL
...