Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 15: 1-8, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31528654

ABSTRACT

Lentiviral vectors (LVs) are excellent tools for gene transfer into mammalian cells. It is noteworthy that the first gene therapy treatment using LVs was approved for commercialization in 2017. The G glycoprotein from rhabdovirus vesicular stomatitis virus (VSV-G) is the glycoprotein most used to pseudotype LVs, due to its high efficiency in transducing several cell types and its resistance to viral vector purification and storage conditions. However, VSV-G expression induces cytotoxicity, which limits LV production to short periods. As alternative to VSV-G, γ-retrovirus glycoproteins (4070A derived, GaLV derived, and RD114 derived) have been used to pseudotype both γ-retroviral vectors (RVs) and LVs. These glycoproteins do not induce cytotoxicity, allowing the development of stable LV producer cells. Additionally, these LV pseudotypes present higher transduction efficiencies of hematopoietic stem cells when compared to VSV-G. Here, new 4070A-, RD114-TR-, and GaLV-TR-derived glycoproteins were developed with the aim of improving its cytoplasmic tail R-peptide cleavage and thus increase LV infectious titers. The new glycoproteins were tested in transient LV production using the wild-type or the less active T26S HIV-1 protease. The GaLV-TR-derived glycoproteins were able to overcome titer differences observed between LV production using wild-type and T26S protease. Additionally, these glycoproteins were even able to increase LV titers, evidencing its potential as an alternative glycoprotein to pseudotype LVs.

2.
AMB Express ; 9(1): 22, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30729353

ABSTRACT

Hepatitis C virus (HCV) infects 3% of world population being responsible for nearly half a million deaths annually urging the need for a prophylactic vaccine. Retrovirus like particles are commonly used scaffolds for antigens presentation being the core of diverse vaccine candidates. The immunogenicity of host proteins naturally incorporated in retrovirus was hypothesized to impact the performance of retrovirus based vaccines. In this work, the capacity of engineered retrovirus like particles devoided of host protein CD81 to display HCV envelope antigens was compared to non-engineered particles. A persistent inability of CD81 negative VLPs to incorporate HCV E2 protein as a result from the inefficient transport of HCV E2 to the plasma membrane, was observed. This work enabled the identification of a CD81-mediated transport of HCV E2 while stressing the importance of host proteins for the development of recombinant vaccines.

3.
Biotechnol Lett ; 40(4): 633-639, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29353442

ABSTRACT

OBJECTIVE: Develop an engineered cell line containing two flexible gene expression systems enabling the continuous production of tailor-made recombinant gammaretrovirus with predictable productivities through targeted integration. RESULTS: Dual-FLEX cells (dFLEX) contain two independent recombinase-mediated cassette exchange (RMCE) systems which confer flexibility to the expression of different transgene and envelope combinations. The flexible envelope expression in dFLEX cells was validated by pseudotyping retrovirus particles with three different viral envelope proteins-GaLV, 4070A and VSV-G. Our results show that dFLEX cells are able to provide high titers of infectious retroviral particles with a single-copy integration of the envelope constructs after RMCE. The integrated CRE/Lox tagging cassette was amenable to express envelope proteins both using constitutive (i.e. CMV) and inducible (i.e. Tet-on) promoters. CONCLUSIONS: dFLEX cell line provides predictable productivities of recombinant retrovirus pseudotyped with different envelope proteins broadening the tropism of particles that can be generated and thus accelerating the research and development of retrovirus-based products.


Subject(s)
Mutagenesis, Insertional/methods , Recombinases/genetics , Retroviridae/genetics , Viral Envelope Proteins/genetics , Cell Engineering , Cell Line , Gene Expression Regulation, Viral/genetics , Genetic Vectors , Humans , Promoter Regions, Genetic , Transgenes/genetics
4.
Hum Gene Ther Methods ; 28(2): 78-90, 2017 04.
Article in English | MEDLINE | ID: mdl-28301970

ABSTRACT

Gammaretrovirus and lentivirus are the preferred viral vectors to genetically modify T and natural killer cells to be used in immune cell therapies. The transduction efficiency of hematopoietic and T cells is more efficient using gibbon ape leukemia virus (GaLV) pseudotyping. In this context gammaretroviral vector producer cells offer competitive higher titers than transient lentiviral vectors productions. The main aim of this work was to identify the key parameters governing GaLV-pseudotyped gammaretroviral vector productivity in stable producer cells, using a retroviral vector expression cassette enabling positive (facilitating cell enrichment) and negative cell selection (allowing cell elimination). The retroviral vector contains a thymidine kinase suicide gene fused with a ouabain-resistant Na+,K+-ATPase gene, a potential safer and faster marker. The establishment of retroviral vector producer cells is traditionally performed by randomly integrating the retroviral vector expression cassette codifying the transgene. More recently, recombinase-mediated cassette exchange methodologies have been introduced to achieve targeted integration. Herein we compared random and targeted integration of the retroviral vector transgene construct. Two retroviral producer cell lines, 293 OuaS and 293 FlexOuaS, were generated by random and targeted integration, respectively, producing high titers (on the order of 107 infectious particles·ml-1). Results showed that the retroviral vector transgene cassette is the key retroviral vector component determining the viral titers notwithstanding, single-copy integration is sufficient to provide high titers. The expression levels of the three retroviral constructs (gag-pol, GaLV env, and retroviral vector transgene) were analyzed. Although gag-pol and GaLV env gene expression levels should surpass a minimal threshold, we found that relatively modest expression levels of these two expression cassettes are required. Their levels of expression should not be maximized. We concluded, to establish a high producer retroviral vector cell line only the expression level of the genomic retroviral RNA, that is, the retroviral vector transgene cassette, should be maximized, both through (1) the optimization of its design (i.e., genetic elements composition) and (2) the selection of high expressing chromosomal locus for its integration. The use of methodologies identifying and promoting integration into high-expression loci, as targeted integration or high-throughput screening are in this perspective highly valuable.


Subject(s)
Genetic Therapy , Genetic Vectors/genetics , Retroviridae/genetics , Virus Integration/genetics , Animals , Cell Line , Gene Expression , Genes, Transgenic, Suicide/genetics , Genetic Vectors/therapeutic use , Humans , Lentivirus/genetics , Leukemia Virus, Gibbon Ape/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Thymidine Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...