Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559181

ABSTRACT

Single-cell technologies offer a unique opportunity to explore cellular heterogeneity in hematopoiesis, reveal malignant hematopoietic cells with clinically significant features and measure gene signatures linked to pathological pathways. However, reliable identification of cell types is a crucial bottleneck in single-cell analysis. Available databases contain dissimilar nomenclature and non-concurrent marker sets, leading to inconsistent annotations and poor interpretability. Furthermore, current tools focus mostly on physiological cell types, lacking extensive applicability in disease. We developed the Cell Marker Accordion, a user-friendly platform for the automatic annotation and biological interpretation of single-cell populations based on consistency weighted markers. We validated our approach on peripheral blood and bone marrow single-cell datasets, using surface markers and expert-based annotation as the ground truth. In all cases, we significantly improved the accuracy in identifying cell types with respect to any single source database. Moreover, the Cell Marker Accordion can identify disease-critical cells and pathological processes, extracting potential biomarkers in a wide variety of contexts in human and murine single-cell datasets. It characterizes leukemia stem cell subtypes, including therapy-resistant cells in acute myeloid leukemia patients; it identifies malignant plasma cells in multiple myeloma samples; it dissects cell type alterations in splicing factor-mutant cells from myelodysplastic syndrome patients; it discovers activation of innate immunity pathways in bone marrow from mice treated with METTL3 inhibitors. The breadth of these applications elevates the Cell Marker Accordion as a flexible, faithful and standardized tool to annotate and interpret hematopoietic populations in single-cell datasets focused on the study of hematopoietic development and disease.

2.
Front Cell Dev Biol ; 11: 1293420, 2023.
Article in English | MEDLINE | ID: mdl-38213308

ABSTRACT

The nucleolus is a subnuclear compartment critical in ribosome biogenesis and cellular stress responses. These mechanisms are governed by a complex interplay of proteins, including NOC1, a member of the NOC family of nucleolar proteins responsible for controlling rRNA processing and ribosomal maturation. This study reveals a novel relationship between NOC1 and MYC transcription factor, known for its crucial role in controlling ribosomal biogenesis, cell growth, and proliferation. Here, we demonstrate that NOC1 functions as a direct target of MYC, as it is transcriptionally induced through a functional MYC-binding E-box sequence in the NOC1 promoter region. Furthermore, protein interactome analysis reveals that NOC1-complex includes the nucleolar proteins NOC2 and NOC3 and other nucleolar components such as Nucleostemin1 Ns1 transporters of ribosomal subunits and components involved in rRNA processing and maturation. In response to MYC, NOC1 expression and localization within the nucleolus significantly increase, suggesting a direct functional link between MYC activity and NOC1 function. Notably, NOC1 over-expression leads to the formation of large nuclear granules and enlarged nucleoli, which co-localize with nucleolar fibrillarin and Ns1. Additionally, we demonstrate that NOC1 expression is necessary for Ns1 nucleolar localization, suggesting a role for NOC1 in maintaining nucleolar structure. Finally, the co-expression of NOC1 and MYC enhances nucleolus size and maintains their co-localization, outlining another aspect of the cooperation between NOC1 and MYC in nucleolar dynamics. This study also reveals an enrichment with NOC1 with few proteins involved in RNA processing, modification, and splicing. Moreover, proteins such as Ythdc1, Flacc, and splenito are known to mediate N6-methyladenosine (m6A) methylation of mRNAs in nuclear export, revealing NOC1's potential involvement in coordinating RNA splicing and nuclear mRNA export. In summary, we uncovered novel roles for NOC1 in nucleolar homeostasis and established its direct connection with MYC in the network governing nucleolar structure and function. These findings also highlight NOC1's interaction with proteins relevant to specific RNA functions, suggesting a broader role in addition to its control of nucleolar homeostasis and providing new insight that can be further investigated.

3.
Biomolecules ; 11(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34944388

ABSTRACT

The abundance of transcriptomic data and the development of causal inference methods have paved the way for gene network analyses in grapevine. Vitis OneGenE is a transcriptomic data mining tool that finds direct correlations between genes, thus producing association networks. As a proof of concept, the stilbene synthase gene regulatory network obtained with OneGenE has been compared with published co-expression analysis and experimental data, including cistrome data for MYB stilbenoid regulators. As a case study, the two secondary metabolism pathways of stilbenoids and lignin synthesis were explored. Several isoforms of laccase, peroxidase, and dirigent protein genes, putatively involved in the final oxidative oligomerization steps, were identified as specifically belonging to either one of these pathways. Manual curation of the predicted sequences exploiting the last available genome assembly, and the integration of phylogenetic and OneGenE analyses, identified a group of laccases exclusively present in grapevine and related to stilbenoids. Here we show how network analysis by OneGenE can accelerate knowledge discovery by suggesting new candidates for functional characterization and application in breeding programs.


Subject(s)
Data Mining/methods , Gene Expression Profiling/methods , Laccase/genetics , Vitis/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Gene Regulatory Networks , Multigene Family , Phylogeny , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...