Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732601

ABSTRACT

Beneficial health effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) are partly attributed to specialized pro-resolving mediators (SPMs), which promote inflammation resolution. Strategies to improve n-3 PUFA conversion to SPMs may, therefore, be useful to treat or prevent chronic inflammatory disorders. Here, we explored a synbiotic strategy to increase circulating SPM precursor levels. Healthy participants (n = 72) received either SynΩ3 (250 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) lysine salts; two billion CFU Bacillus megaterium; n = 23), placebo (n = 24), or fish oil (300 mg EPA plus DHA; N = 25) capsules daily for 28 days in a randomized, double-blind placebo-controlled parallel 3-group design. Biomarkers were assessed at baseline and after 2 and 28 days of intervention. The primary analysis involved the comparison between SynΩ3 and placebo. In addition, SynΩ3 was compared to fish oil. The synbiotic SynΩ3 comprising Bacillus megaterium DSM 32963 and n-3 PUFA salts significantly increased circulating SPM precursor levels, including 18-hydroxy-eicosapentaenoic acid (18-HEPE) plus 5-HEPE, which was not achieved to this extent by fish oil with a similar n-3 PUFA content. Omega-3 indices were increased slightly by both SynΩ3 and fish oil. These findings suggest reconsidering conventional n-3 PUFA supplementation and testing the effectiveness of SynΩ3 particularly in conditions related to inflammation.


Subject(s)
Bacillus megaterium , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Synbiotics , Humans , Male , Female , Adult , Double-Blind Method , Synbiotics/administration & dosage , Eicosapentaenoic Acid/blood , Young Adult , Docosahexaenoic Acids/blood , Middle Aged , Biomarkers/blood , Healthy Volunteers , Fish Oils/administration & dosage
2.
Front Nutr ; 9: 1001419, 2022.
Article in English | MEDLINE | ID: mdl-36570155

ABSTRACT

Introduction: Impaired glucose homeostasis is a significant risk factor for cardiometabolic diseases, whereas the efficacy of available standard therapies is limited, mainly because of poor adherence. This post-marketing study assessed the glucose-lowering potential of a synbiotic-based formulation. Methods: One hundred ninety-two participants were enrolled in a digital nutrition program with continuous glucose monitoring (CGM) and received a study product comprising Bacillus subtilis DSM 32315 and L-alanyl-L-glutamine. Participants underwent a first sensor phase without supplementation, followed by a 14-day supplementation phase without sensor, and completed by a second sensor phase while continuing supplementation. Fasting glucose levels were determined before and after supplementation by CGM. In addition, the postprandial glycemic response to an oral glucose challenge, body weight, HbA1c concentrations, and BMI was analyzed. Subgroup analyses of subjects with elevated glucose and HbA1c levels vs. normoglycemic subjects were performed. Results: Supplementation with the study product resulted in significant improvements in glucose parameters (delta values: fasting glucose -2,13% ± 8.86; iAUC0-120 -4.91% ± 78.87; HbA1c: -1.20% ± 4.72) accompanied by a significant weight reduction (-1.07 kg ± 2.30) in the study population. Subgroup analyses revealed that the improvements were mainly attributed to a prediabetic subgroup with elevated fasting glucose and HbA1c values before supplementation (delta values: fasting glucose -6.10% 4± 7.89; iAUC0-120 -6.28% ± 115.85; HbA1c -3.31% ± 4.36; weight: -1.47 kg ± 2.82). Conclusion: This study indicates that the synbiotic composition is an effective and convenient approach to counteract hyperglycemia. Further placebo-controlled studies are warranted to test its efficacy in the treatment of cardiometabolic diseases.

3.
Nutrients ; 14(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35684065

ABSTRACT

Specialized pro-resolving mediators (SPM) have emerged as crucial lipid mediators that confer the inflammation-resolving effects of omega-3 polyunsaturated fatty acids (n-3 PUFA). Importantly, SPM biosynthesis is dysfunctional in various conditions, which may explain the inconclusive efficacy data from n-3 PUFA interventions. To overcome the limitations of conventional n-3 PUFA supplementation strategies, we devised a composition enabling the self-sufficient production of SPM in vivo. Bacillus megaterium strains were fed highly bioavailable n-3 PUFA, followed by metabololipidomics analysis and bioinformatic assessment of the microbial genomes. All 48 tested Bacillus megaterium strains fed with the n-3 PUFA formulation produced a broad range of SPM and precursors thereof in a strain-specific manner, which may be explained by the CYP102A1 gene polymorphisms that we detected. A pilot study was performed to test if a synbiotic Bacillus megaterium/n-3 PUFA formulation increases SPM levels in vivo. Supplementation with a synbiotic capsule product led to significantly increased plasma levels of hydroxy-eicosapentaenoic acids (5-HEPE, 15-HEPE, 18-HEPE) and hydroxy-docosahexaenoic acids (4-HDHA, 7-HDHA) as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in healthy humans. To the best of our knowledge, we report here for the first time the development and in vivo application of a self-sufficient SPM-producing formulation. Further investigations are warranted to confirm and expand these findings, which may create a new class of n-3 PUFA interventions targeting inflammation resolution.


Subject(s)
Bacillus megaterium , Fatty Acids, Omega-3 , Synbiotics , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Unsaturated , Humans , Inflammation , Pilot Projects , Sodium Chloride, Dietary
4.
Nutrients ; 14(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35011015

ABSTRACT

The gut microbiota is a crucial modulator of health effects elicited by food components, with SCFA (short chain fatty acids), especially butyrate, acting as important mediators thereof. We therefore developed a nutritional synbiotic composition targeted at shifting microbiome composition and activity towards butyrate production. An intestinal screening model was applied to identify probiotic Bacillus strains plus various amino acids and peptides with suitable effects on microbial butyrate producers and levels. A pilot study was performed to test if the synbiotic formulation could improve fecal butyrate levels in healthy humans. A combination of Bacillus subtilis DSM (Number of German Collection of Microorganisms and Cell Cultures) 32315 plus L-alanyl-L-glutamine resulted in distinctly increased levels of butyrate and butyrate-producing taxa (Clostridium group XIVa, e.g., Faecalibacterium prausnitzii), both in vitro and in humans. Moreover, circulating lipid parameters (LDL-, and total cholesterol and LDL/HDL cholesterol ratio) were significantly decreased and further metabolic effects such as glucose-modulation were observed. Fasting levels of PYY (Peptide YY) and GLP-1 (Glucagon-like Peptide 1) were significantly reduced. In conclusion, our study indicates that this synbiotic composition may provide an effective and safe tool for stimulation of intestinal butyrate production with effects on e.g., lipid and glucose homeostasis. Further investigations in larger cohorts are warranted to confirm and expand these findings.


Subject(s)
Bacillus subtilis , Butyrates/metabolism , Gastrointestinal Microbiome/physiology , Glutamine/administration & dosage , Healthy Volunteers , Intestines/metabolism , Lipid Metabolism , Synbiotics/administration & dosage , Adolescent , Adult , Clostridium , Faecalibacterium prausnitzii , Glucose/metabolism , Homeostasis , Humans , Male , Young Adult
5.
Br J Nutr ; 98(5): 929-36, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17562226

ABSTRACT

Subjects with obesity and elevated fasting blood glucose are at high risk of developing type 2 diabetes which may be reduced by a dietary intervention leading to an improvement of insulin resistance. We investigated the potential of a whole-grain based dietary product (WG) with reduced starch content derived from double-fermented wheat during a hypo-energetic diet to positively influence body weight, fasting blood glucose, insulin resistance and lipids in comparison to a nutrient-dense meal replacement product (MR) in a randomized two-way cross-over study with two 4-week treatment periods separated by a 2-week wash-out. Subjects replaced at least two daily meals with WG and MR, respectively, targeting for a consumption of 200 g of either product per day. Total daily energy intake was limited to 7120 kJ. Thirty-one subjects (BMI 33.9 (SD 2.7) kg/m2, fasting blood glucose 6.3 (SD 0.8) mmol/l) completed the study. In both treatment groups body weight (-2.5 (SD 2.0) v. - 3.2 (SD 1.6) kg for WG v. MR), fasting blood glucose (-0.4 (SD 0.3) v. -0.5 (SD 0.5) mmol/l), total cholesterol (-0.5 (SD 0.5) v. -0.6 (SD 0.5) mmol/l), TAG (-0.3 (SD 0.9) v. -0.3 (SD 1.2) mmol/l) and homeostasis model assessment (HOMA) insulin resistance score (-0.7 (SD 0.8) v. -1.1 (SD 1.7) microU/ml x mmol/l) improved (P < 0.05) with no significant differences between the treatments. After statistical adjustment for the amount of body weight lost, however, the comparison between both groups revealed that fasting serum insulin (P = 0.031) and HOMA insulin resistance score (P = 0.049) improved better with WG than with MR. We conclude that WG favourably influences metabolic risk factors for type 2 diabetes independent from the amount of body weight lost during a hypo-energetic diet.


Subject(s)
Blood Glucose/metabolism , Dietary Fiber/administration & dosage , Edible Grain , Insulin Resistance , Obesity/diet therapy , Adolescent , Adult , Aged , Body Weight , Cross-Over Studies , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/prevention & control , Dietary Fiber/adverse effects , Edible Grain/adverse effects , Female , Humans , Insulin/blood , Male , Middle Aged , Nutritional Physiological Phenomena , Nutritive Value , Obesity/blood , Obesity/physiopathology , Risk Factors
6.
J Nutr ; 135(2): 199-205, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15671213

ABSTRACT

For identification of the underlying molecular changes in hepatic lipid metabolism in zinc deficiency, rats were force-fed a zinc-deficient diet. Subsequently DNA-microarray and proteome profiling was performed in combination with hepatic lipid analysis. Of 6200 target sequences analyzed, 268 transcripts showed altered expression levels in livers of zinc-deficient rats, with 43 genes thereof related to hepatic lipid metabolism. Northern blot analysis and quantitative real-time RT-PCR were employed to confirm changes in mRNA levels. Proteins involved in lipid metabolism were identified by proteome analysis. Functional gene clusters with uniform changes in transcript levels suggested that the pathways required for lipolysis and mitochondrial as well as peroxisomal fatty acid degradation were downregulated, whereas those needed for de novo fatty acid synthesis and triglyceride assembly were increased. Subsequent enzymatic analysis of liver tissues confirmed an almost 40% greater triacylglycerol concentration in zinc-depleted rats, as well as an altered fatty acid composition of the lipid fraction as determined by gas chromatography. Liver lipids of zinc-deficient rats had significantly greater proportions of cis-9-oleic acid, cis-11-vaccenic acid, caprylic acid, myristic acid, alpha-linolenic acid, and eicosapentaenoic acid, and significantly less stearic and arachidonic acids. These alterations in hepatic metabolism are discussed in the context of changes in mRNA and protein levels of enzymes and transporters responsible for fatty acid metabolism, sequestration, and their transcriptional control.


Subject(s)
Gene Expression Regulation , Lipid Metabolism , Liver/metabolism , Proteome , Transcription, Genetic , Zinc/deficiency , Animals , Male , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Rats , Reference Values , Reverse Transcriptase Polymerase Chain Reaction
7.
Biol Chem ; 385(7): 571-83, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15318805

ABSTRACT

Based on the effects of a selective experimental zinc deficiency in a rodent model we explore the use of transcriptome profiling for assessing nutrient-gene interactions in the liver at the molecular and cellular levels. Zinc deficiency caused pleiotropic alterations in mRNA/protein levels of hundreds of genes. In the context of observed metabolic alterations in hepatic metabolism, possible mechanisms are discussed for how a low zinc status may be sensed and transmitted into changes in various metabolic pathways. However, it also becomes obvious that analysis of such complex nutrient-gene interactions beyond the descriptional level is a real challenge for systems biology.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Oligonucleotide Array Sequence Analysis , Zinc , Animals , Deficiency Diseases/genetics , Fatty Acids/metabolism , Gene Expression Regulation/drug effects , Glucose/metabolism , Liver/metabolism , Models, Animal , Models, Biological , Oxidative Stress/physiology , Rats , Zinc/deficiency , Zinc/metabolism , Zinc/pharmacology
8.
J Nutr ; 133(4): 1004-10, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12672911

ABSTRACT

Zinc deficiency affects hepatic functions and due to the central role of the liver in metabolism, this may contribute to metabolic alterations in other tissues in zinc deficiency. In addition to clinical manifestations of zinc deficiency, we used cDNA- and oligonucleotide-arrays to compare the expression of > 2500 different genes in liver of rats force-fed a zinc-adequate or a zinc-deficient diet for 11 d. Radio- or fluorescence-labeled cDNAs from liver of control and zinc-deficient rats were hybridized to arrays. Approximately 1550 mRNAs were detected above background levels; by comparing expression profiles of the two groups, the mRNA levels of 66 genes were found to be altered by zinc deficiency. Steady-state expression levels of 35 genes were reduced, whereas the mRNA-levels of 31 genes were elevated. Array data were verified by Northern blot analysis for 24 selected genes and 19 were confirmed to be up- or down-regulated. Among those, predominantly gene products that participate in growth (i.e., insulin-like growth factor binding proteins), lipid metabolism (long-chain acyl-CoA synthetase), xenobiotic metabolism (cytochrome P(450) isoenzymes), the stress response (glutathione transferase), nitrogen metabolism (cytosolic aspartate aminotransferase), intracellular trafficking (syntaxin isoforms) and signal transduction (G-protein-coupled receptors) were identified. Additionally, regulation of mRNA levels of genes important for porphyrin synthesis and collagen metabolism was observed. In conclusion, we have identified in vivo a number of mammalian genes from different cellular pathways whose expression changes in response to zinc depletion. The characterization of the identified genes and their products will allow a more comprehensive analysis of the role of zinc in metabolism; moreover, the mRNAs identified could be useful in establishing biomarkers for the determination of zinc status in mammals.


Subject(s)
Deficiency Diseases/genetics , Gene Expression Profiling , Liver/metabolism , Oligonucleotide Array Sequence Analysis , Zinc/deficiency , Animals , Blotting, Northern , Phenotype , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...