Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22277163

ABSTRACT

BackgroundIn this phase 2 randomised placebo-controlled clinical trial, we hypothesised that blocking mineralocorticoid receptors with spironolactone in patients with COVID-19 is safe and may reduce illness severity. MethodsHospitalised patients with confirmed COVID-19 were randomly allocated to low dose oral spironolactone (50mg day 1, then 25mg once daily for 21 days) or standard care in a 2:1 ratio. Both groups received dexamethasone 6mg for 10 days. Group allocation was blinded to the patient and research team. Primary outcomes were time to recovery, defined as the number of days until patients achieved WHO Ordinal Scale (OS) category [≤] 3, and the effect of spironolactone on aldosterone, D-dimer, angiotensin II and Von Willebrand Factor (VWF). Results120 patients were recruited in Delhi from 01 February to 30 April 2021. 74 were randomly assigned to spironolactone and dexamethasone (SpiroDex), and 46 to dexamethasone alone (Dex). There was no significant difference in the time to recovery between SpiroDex and Dex groups (SpiroDex median 4.5 days, Dex median 5.5 days, p = 0.055). SpiroDex patients had lower aldosterone levels on day 7 and lower D-dimer levels on days 4 and 7 (day 7 D-dimer mean SpiroDex 1.15{micro}g/mL, Dex 3.15 {micro}g/mL, p = 0.0004). There was no increase in adverse events in patients receiving SpiroDex. Post hoc analysis demonstrated reduced clinical deterioration (pre specified as escalating to WHO OS category >4) in the SpiroDex group vs Dex group (5.4% vs 19.6%). ConclusionLow dose oral spironolactone in addition to dexamethasone was safe and reduced D-Dimer and aldosterone. Although time to recovery was not significantly reduced, fewer patients progressed to severe disease. Phase 3 randomised controlled trials with spironolactone should be considered.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21264648

ABSTRACT

Despite the success of vaccines and selected repurposed treatments, COVID-19 is likely to remain a global health problem and further chemotherapeutics are required. Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials without characterisation of Pharmacokinetics (PK)/Pharmacodynamics (PD) including safety in COVID-19. One such drug is Nafamostat Mesylate (Nafamostat), a synthetic serine protease inhibitor with anticoagulant and anti-inflammatory properties. Preclinical data has demonstrated that it is has potent antiviral activity against SARS-CoV-2 by directly inhibiting the transmembrane protease serine 2 (TMPRSS2) dependent stage of host cell entry. MethodsWe present the findings of a phase Ib/II open label, platform randomised controlled trial (RCT), exploring the safety of intravenous Nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), Nafamostat or an alternative therapy. Secondary endpoints included clinical endpoints such as number of oxygen free days and clinical improvement/ deterioration, PK/PD, thromboelastometry, D Dimers, cytokines, immune cell flow cytometry and viral load. ResultsData is reported from 42 patients, 21 of which were randomly assigned to receive intravenous Nafamostat. The Nafamostat group developed significantly higher plasma creatinine levels, more adverse events and a lower number of oxygen free days. There were no other statistically significant differences in the primary or secondary endpoints between Nafamostat and SoC. PK data demonstrated that intravenous Nafamostat was rapidly broken down to inactive metabolites. We observed an antifibrinolytic profile, and no significant anticoagulant effects in thromboelastometry. Participants in the Nafamostat group had higher D Dimers compared to SoC. There were no differences in cytokine profile and immune cell phenotype and viral loads between the groups. ConclusionIn hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous Nafamostat. Given the number of negative trials with repurposed drugs, our experimental medicine trial highlights the value of PK/PD studies prior to selecting drugs for efficacy trials. Given the mechanism of action, further evaluation of Nafamostat delivered via a different route may be warranted. This trial demonstrates the importance of experimental trials in new disease entities such as COVID-19 prior to selecting drugs for larger trials.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21257513

ABSTRACT

IntroductionCOVID-19 (Coronavirus Disease 2019) is a new viral-induced pneumonia caused by infection with a novel coronavirus, SARS CoV2 (Severe Acute Respiratory Syndrome Coronavirus 2). At present there are few proven effective treatments. This early phase experimental medicine protocol describes an overarching and adaptive trial designed to provide safety, pharmacokinetic (PK)/ pharmacodynamic (PD) information and exploratory biological surrogates of efficacy, which may support further development and deployment of candidate therapies in larger scale trials of COVID-19 positive patients. Methods and analysisDEFINE is an ongoing exploratory multicentre platform, open label, randomised study. COVID-19 positive patients will be recruited from the following cohorts; a) community cases b) hospitalised patients with new changes on a chest x-ray (CXR) or a computed tomography (CT) scan or requiring supplemental oxygen and c) hospitalised patients requiring assisted ventilation. Participants may be recruited from all three of these cohorts, depending on the experimental therapy, its route of administration and mechanism of action. The primary statistical analyses are concerned with the safety of candidate agents as add-on therapy to standard of care in patients with COVID-19. Safety will be assessed usingO_LIHaematological and biochemical safety laboratory investigations. C_LIO_LIPhysical examination C_LIO_LIVital signs (blood pressure/heart rate/temperature and respiratory rate) C_LIO_LIDaily electrocardiogram (ECG) readings C_LIO_LIAdverse events C_LI The analysis population will consist of (i) all patients randomised to a treatment arm who receive any dose of the study drug and (ii) all patients randomised to the control arm who would also have been eligible to receive a study drug. Secondary analysis will assess the following variables during treatment period 1) the response of key exploratory biomarkers 2) change in WHO ordinal scale and NEWS2 score 3) oxygen requirements 4) viral load 5) duration of hospital stay 6) PK/PD and 7) changes in key coagulation pathways. Ethics and disseminationThe DEFINE trial platform and its initial two treatment and standard of care arms have received full ethical approval from Scotland A REC (20/SS/0066), the MHRA (EudraCT 2020-002230-32) and NHS Lothian and NHS Greater Glasgow and Clyde. The results of each study arm will be published as soon as the treatment arm has finished recruitment, data input is complete and any outstanding patient safety follow-ups have been completed. Depending on the results of these or future arms, data will be shared with larger clinical trial networks, including RECOVERY, and to other partners for rapid roll out in larger patient cohorts. Registration detailsThe DEFINE protocol has been registered on ISRCTN (https://www.isrctn.com/) and Clinicaltrials.gov(https://www.clinicaltrials.gov/). ClinicalTrials.gov Identifier: NCT04473053 ISRCTN Identifier: ISRCTN14212905 Strengths and limitations of this studyO_LIThe trial is as flexible as possible to ensure a broad range of patients can be recruited and candidate therapies can be added or removed as evidence emerges. C_LIO_LIThe team are collecting real world data of medications at an early stage of their use in COVID-19 across the full spectrum of disease; allowing the administration of different treatment formulations (inhaled vs oral vs intravenous). C_LIO_LIThe simultaneous collection of clinical outcomes as well as exploratory endpoints including clinical biomarkers, flow cytometry, PK/PD and thromboelastography allows further characterisation and elucidation of the temporal immuno-inflammatory cascade in COVID-19 to inform on future therapy selection. C_LIO_LIThis is a Phase 1b/IIa platform study and thus the primary end point is clinical safety therefore our anticipated numbers will be too small to allow for definitive data on efficacy. C_LIO_LIDEFINE is an experimental medicine platform, currently restricted to three clinical sites and so the generation of data will be slower than that of larger platforms with access to a greater number of patients. C_LI

SELECTION OF CITATIONS
SEARCH DETAIL
...