Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873448

ABSTRACT

Treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and expensive. Current reconstructive methods include surgical correction of injuries, short-term bone stabilization, and long-term use of bone grafting solutions, including implantation of (i) allografts which are prone to implant failure or infection, (ii) autografts which are limited in supply. Current bone regenerative approaches have consistently relied on BMP-2 application with or without addition of stem cells. BMP2 treatment can lead to severe bony overgrowth or uncontrolled inflammation, which can accelerate further bone loss. Bone marrow-derived mesenchymal stem cell-based treatments, which do not have the side effects of BMP2, are not currently FDA approved, and are time and resource intensive. There is a critical need for novel bone regenerative therapies to treat CF bone loss that have minimal side effects, are easily available, and are affordable. In this study we investigated novel bone regenerative therapies downstream of JAGGED1 (JAG1). We previously demonstrated that JAG1 induces murine cranial neural crest (CNC) cells towards osteoblast commitment via a NOTCH non-canonical pathway involving JAK2-STAT5 (1) and that JAG1 delivery with CNC cells elicits bone regeneration in vivo. In this study, we hypothesized that delivery of JAG1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitute an effective bone regenerative treatment in an in vivo murine bone loss model of a critically-sized cranial defect. Using this CF defect model in vivo, we delivered JAG1 with pediatric human bone-derived osteoblast-like (HBO) cells to demonstrate the osteo-inductive properties of JAG1 in human cells and in vitro we utilized the HBO cells to identify the downstream non-canonical JAG1 signaling intermediates as effective bone regenerative treatments. In vitro, we identified an important mechanism by which JAG1 induces pediatric osteoblast commitment and bone formation involving the phosphorylation of p70 S6K. This discovery enables potential new treatment avenues involving the delivery of tethered JAG1 and the downstream activators of p70 S6K as powerful bone regenerative therapies in pediatric CF bone loss.

2.
Neurosci Biobehav Rev ; 144: 104971, 2023 01.
Article in English | MEDLINE | ID: mdl-36436737

ABSTRACT

Neuroscientists have sought to identify the underlying neural systems supporting social processing that allow interaction and communication, forming social relationships, and navigating the social world. Through the use of NIMH's Research Domain Criteria (RDoC) framework, we evaluated consensus among studies that examined brain activity during social tasks to elucidate regions comprising the "social brain". We examined convergence across tasks corresponding to the four RDoC social constructs, including Affiliation and Attachment, Social Communication, Perception and Understanding of Self, and Perception and Understanding of Others. We performed a series of coordinate-based meta-analyses using the activation likelihood estimate (ALE) method. Meta-analysis was performed on whole-brain coordinates reported from 864 fMRI contrasts using the NiMARE Python package, revealing convergence in medial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, temporoparietal junction, bilateral insula, amygdala, fusiform gyrus, precuneus, and thalamus. Additionally, four separate RDoC-based meta-analyses revealed differential convergence associated with the four social constructs. These outcomes highlight the neural support underlying these social constructs and inform future research on alterations among neurotypical and atypical populations.


Subject(s)
Brain Mapping , Brain , Humans , Likelihood Functions , Brain/diagnostic imaging , Brain/physiology , Temporal Lobe , Magnetic Resonance Imaging
3.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187740

ABSTRACT

Orofacial clefts are the most common craniofacial congenital anomaly. Following cleft palate repair, up to 60% of surgeries have wound healing complications leading to oronasal fistula (ONF), a persistent connection between the roof of the mouth and the nasal cavity. The current gold standard methods for ONF repair use human allograft tissues; however, these procedures have risks of graft infection and/or rejection, requiring surgical revisions. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. We utilized a repurposed FDA-approved immunomodulatory drug, FTY720, to reduce the egress of lymphocytes and induce immune cell fate switching toward pro-regenerative phenotypes. Here, we engineered a bilayer biomaterial system using Tegaderm™, a liquid-impermeable wound dressing, to secure and control the delivery of FTY720- nanofiber scaffolds (FTY720-NF). We optimized release kinetics of the bilayer FTY720-NF to sustain drug release for up to 7d with safe, efficacious transdermal absorption and tissue biodistribution. Through comprehensive immunophenotyping, our results illustrate a pseudotime pro-regenerative state transition in recruited hybrid immune cells to the wound site. Additional histological assessments established a significant difference in full thickness ONF closure in mice on Day 7 following treatment with bilayer FTY720-NF, compared to controls. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options for pediatric patients. One Sentence Summary: Local delivery of bilayer FTY720-nanofiber scaffolds in an ONF mouse model promotes complete wound closure through modulation of pro-regenerative immune and stromal cells.

4.
Transl Res ; 236: 17-34, 2021 10.
Article in English | MEDLINE | ID: mdl-34161876

ABSTRACT

Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.


Subject(s)
Mouth Mucosa/pathology , Regenerative Medicine , Wound Healing , Animals , Disease Models, Animal , Epithelium/pathology , Humans , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...