Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 21(3): 748-65, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23273606

ABSTRACT

Sodium glucose co-transporter 1 (SGLT1) plays a dominant role in the absorption of glucose in the gut and is considered a promising target in the development of therapeutic options for postprandial hyperglycemia. Previously, we reported potent and selective SGLT1 inhibitors 1 and 2 showing efficacy in oral carbohydrate tolerance tests in diabetic rat models. In a pharmacokinetic (PK) study of 2, excessive systemic exposure to metabolites of 2 was observed, presumably due to the high permeability of its aglycone (2a). To further improve SGLT1 inhibitory activity and reduce aglycone permeability, a series of 4-benzyl-5-isopropyl-1H-pyrazol-3-yl ß-D-glycopyranoside derivatives bearing novel hydrophilic substitution groups on the phenyl ring were synthesized and their inhibitory activity toward SGLTs was evaluated. Optimized compound 14c showed an improved profile satisfying both higher activity and lower permeability of its aglycone (22f) compared with initial leads 1 and 2. Moreover, the superior efficacy of 14c in various carbohydrate tolerance tests in diabetic rat models was confirmed compared with acarbose, an α-glucosidase inhibitor (α-GI) widely used in the clinic.


Subject(s)
Drug Design , Glycosides/pharmacology , Sodium-Glucose Transporter 1/antagonists & inhibitors , Dose-Response Relationship, Drug , Glycosides/chemical synthesis , Glycosides/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Structure-Activity Relationship
2.
Bioorg Med Chem ; 20(22): 6598-612, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23062824

ABSTRACT

Sodium glucose co-transporter 1 (SGLT1) plays a dominant role in the absorption of glucose in the gut and is considered a promising target in the development of treatments for postprandial hyperglycemia. A series of 4-benzyl-1H-pyrazol-3-yl ß-d-glucopyranoside derivatives have been synthesized, and its inhibitory activity toward SGLTs has been evaluated. By altering the substitution groups at the 5-position of the pyrazole ring, and every position of the phenyl ring, we studied the structure-activity relationship (SAR) profiles and identified a series of potent and selective SGLT1 inhibitors. Representative derivatives showed a dose-dependent suppressing effect on the escalation of blood glucose levels in oral mixed carbohydrate tolerance tests (OCTT) in streptozotocin-nicotinamide-induced diabetic rats (NA-STZ rats).


Subject(s)
Glucosides/chemistry , Hypoglycemic Agents/chemical synthesis , Sodium-Glucose Transporter 1/antagonists & inhibitors , Animals , Blood Glucose/analysis , Crystallography, X-Ray , Diabetes Mellitus, Experimental/drug therapy , Glucosides/chemical synthesis , Glucosides/therapeutic use , Humans , Hyperglycemia/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Molecular Conformation , Rats , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors , Structure-Activity Relationship
3.
J Pharmacol Exp Ther ; 342(2): 288-96, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22537769

ABSTRACT

The high-affinity sodium glucose cotransporter (SGLT1) plays a critical role in glucose absorption from the gastrointestinal tract. We have developed 3-(3-{4-[3-(ß-D-glucopyranosyloxy)-5-isopropyl-1H-pyrazol-4-ylmethyl]-3-methylphenoxy}propylamino)propionamide (KGA-2727), which has a pyrazole-O-glucoside structure, as the first selective SGLT1 inhibitor. KGA-2727 inhibited SGLT1 potently and highly selectively in an in vitro assay using cells transiently expressing recombinant SGLTs. In a small intestine closed loop absorption test with normal rats, KGA-2727 inhibited the absorption of glucose but not that of fructose. After oral intake of starch along with KGA-2727 in normal rats, the residual content of glucose in the gastrointestinal tract increased. In the oral glucose tolerance test with streptozotocin-induced diabetic rats, KGA-2727 attenuated the elevation of plasma glucose after glucose loading, indicating that KGA-2727 improved postprandial hyperglycemia. In Zucker diabetic fatty (ZDF) rats, chronic treatments with KGA-2727 reduced the levels of plasma glucose and glycated hemoglobin. Furthermore, KGA-2727 preserved glucose-stimulated insulin secretion and reduced urinary glucose excretion with improved morphological changes of pancreatic islets and renal distal tubules in ZDF rats. In addition, the chronic treatment with KGA-2727 increased the level of glucagon-like peptide-1 in the portal vein. Taken together, our data indicate that the selective SGLT1 inhibitor KGA-2727 had antidiabetic efficacy and allow us to propose KGA-2727 as a candidate for a novel and useful antidiabetic agent.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Glucosides/pharmacology , Hypoglycemic Agents/pharmacology , Pyrazoles/pharmacology , Sodium-Glucose Transporter 1/antagonists & inhibitors , Animals , Diabetes Mellitus, Experimental/metabolism , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Glucosides/metabolism , Glycated Hemoglobin/metabolism , Humans , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hypoglycemic Agents/chemistry , Insulin/metabolism , Intestinal Absorption/drug effects , Intestine, Small/drug effects , Intestine, Small/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Rats , Rats, Wistar , Rats, Zucker , Sodium-Glucose Transporter 1/metabolism
4.
Life Sci ; 76(9): 1039-50, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15607332

ABSTRACT

We isolated a cDNA clone of SLC5A9/SGLT4 from human small intestinal full-length cDNA libraries, and functionally characterized it in vitro. The messenger RNA encoding SGLT4 was mainly expressed in the small intestine and kidney, among the human tissues tested. COS-7 cells transiently expressing SGLT4 exhibited Na(+)-dependent alpha-methyl-D-glucopyranoside (AMG) transport activity with an apparent K(m) of 2.6 mM, suggesting that SGLT4 is a low affinity-type transporter. The rank order of naturally occurring sugar analogs for the inhibition of AMG transport was: D-mannose (Man) >> D-glucose (Glc) > D-fructose (Fru) = 1,5-anhydro-D-glucitol (1,5AG) > D-galactose (Gal). Recognition of Man as a substrate was confirmed by direct uptake of Man into the cell. COS-7 cells expressing a putative murine SGLT4 ortholog showed similar Na(+)-dependent AMG transport activity and a similar deduced substrate specificity. These results suggest that SGLT4 would have unique physiological functions (i.e., absorption and/or reabsorption of Man, 1,5AG, and Fru, in addition to Glc).


Subject(s)
Deoxyglucose/metabolism , Fructose/metabolism , Mannose/metabolism , Monosaccharide Transport Proteins/physiology , Amino Acid Sequence , Animals , COS Cells , Humans , Molecular Sequence Data , Monosaccharide Transport Proteins/genetics , RNA, Messenger/analysis , Sodium-Glucose Transporter 2
SELECTION OF CITATIONS
SEARCH DETAIL
...