Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 6: 35220, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27734911

ABSTRACT

Learning to avoid threats in the environment is highly adaptive. However, sometimes a dysregulation of fear memories processing may underlie fear-related disorders. Despite recent advances, a major question of how to effectively attenuate persistent fear memories in a safe manner remains unresolved. Here we show experiments employing a behavioural tool to target a specific time window after training to limit the persistence of a fear memory in rats. We observed that exposure to a novel environment 11 h after an inhibitory avoidance (IA) training that induces a long-lasting memory, attenuates the durability of IA memory but not its formation. This effect is time-restricted and not seen when the environment is familiar. In addition, novelty-induced attenuation of IA memory durability is prevented by the intrahippocampal infusion of the CaMKs inhibitor KN-93. This new behavioural approach which targets a specific time window during late memory consolidation, might represent a new tool for reducing the durability of persistent fear memories.


Subject(s)
Fear , Memory , Animals , Avoidance Learning , Male , Rats , Rats, Wistar
2.
Neural Plast ; 2015: 603672, 2015.
Article in English | MEDLINE | ID: mdl-26380116

ABSTRACT

The synaptic tagging and capture (STC) hypothesis provides a compelling explanation for synaptic specificity and facilitation of long-term potentiation. Its implication on long-term memory (LTM) formation led to postulate the behavioral tagging mechanism. Here we show that a maintenance tagging process may operate in the hippocampus late after acquisition for the persistence of long-lasting memory storage. The proposed maintenance tagging has several characteristics: (1) the tag is transient and time-dependent; (2) it sets in a late critical time window after an aversive training which induces a short-lasting LTM; (3) exposing rats to a novel environment specifically within this tag time window enables the consolidation to a long-lasting LTM; (4) a familiar environment exploration was not effective; (5) the effect of novelty on the promotion of memory persistence requires dopamine D1/D5 receptors and Arc expression in the dorsal hippocampus. The present results can be explained by a broader version of the behavioral tagging hypothesis and highlight the idea that the durability of a memory trace depends either on late tag mechanisms induced by a training session or on events experienced close in time to this tag.


Subject(s)
Hippocampus/physiology , Memory, Long-Term/physiology , Animals , Avoidance Learning , Cytoskeletal Proteins/biosynthesis , Environment , Male , Motor Activity , Nerve Tissue Proteins/biosynthesis , Rats , Rats, Wistar , Receptors, Dopamine D1/physiology , Receptors, Dopamine D5/physiology , Recognition, Psychology
3.
Front Behav Neurosci ; 8: 408, 2014.
Article in English | MEDLINE | ID: mdl-25506318

ABSTRACT

Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus.

4.
Front Behav Neurosci ; 8: 170, 2014.
Article in English | MEDLINE | ID: mdl-24860453

ABSTRACT

The Lateral Habenula (LHb) is a small brain structure that codifies negative motivational value and has been related to major depression. It has been shown recently that LHb activation is sufficient to induce aversive associative learning; however the key question about whether LHb activation is required for an aversive memory to be formed has not been addressed. In this article we studied the function of the LHb in memory formation using the Inhibitory Avoidance task (IA). We found that LHb inactivation during IA training does not disrupt memory when assessed 24 h after, but abolishes it 7 days later, indicating that LHb activity during memory acquisition is not necessary for memory formation, but regulates its temporal stability. These effects suggest that LHb inactivation modifies subjective perception of the training experience.

SELECTION OF CITATIONS
SEARCH DETAIL