Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Biomech ; 168: 112134, 2024 May.
Article in English | MEDLINE | ID: mdl-38723428

ABSTRACT

Connective tissues can be recognized as an important structural support element in muscles. Recent studies have also highlighted its importance in active force generation and transmission between muscles, particularly through the epimysium. In the present study, we aimed to investigate the impact of the endomysium, the connective tissue surrounding muscle fibers, on both passive and active force production. Pairs of skeletal muscle fibers were extracted from the extensor digitorum longus muscles of rats and, after chemical skinning, their passive and active force-length relationships were measured under two conditions: (i) with the endomysium between muscle fibers intact, and (ii) after its dissection. We found that the dissection of the endomysium caused force to significantly decrease in both active (by 22.2 % when normalized to the maximum isometric force; p < 0.001) and passive conditions (by 25.9 % when normalized to the maximum isometric force; p = 0.034). These findings indicate that the absence of endomysium compromises muscle fiber's not only passive but also active force production. This effect may be attributed to increased heterogeneity in sarcomere lengths, enhanced lattice spacing between myofilaments, or a diminished role of trans-sarcolemmal proteins due to dissecting the endomysium. Future investigations into the underlying mechanisms and their implications for various extracellular matrix-related diseases are warranted.


Subject(s)
Muscle Fibers, Skeletal , Animals , Rats , Muscle Fibers, Skeletal/physiology , Rats, Wistar , Connective Tissue/physiology , Sarcomeres/physiology , Male , Muscle, Skeletal/physiology , Biomechanical Phenomena , Isometric Contraction/physiology , Muscle Contraction/physiology
3.
Pflugers Arch ; 475(4): 421-435, 2023 04.
Article in English | MEDLINE | ID: mdl-36790515

ABSTRACT

Eccentric muscle loading encompasses several unique features compared to other types of contractions. These features include increased force, work, and performance at decreased oxygen consumption, reduced metabolic cost, improved energy efficiency, as well as decreased muscle activity. This review summarises explanatory approaches to long-standing questions in terms of muscular contraction dynamics and molecular and cellular mechanisms underlying eccentric muscle loading. Moreover, this article intends to underscore the functional link between sarcomeric components, emphasising the fundamental role of titin in skeletal muscle. The giant filament titin reveals versatile functions ranging from sarcomere organisation and maintenance, providing passive tension and elasticity, and operates as a mechanosensory and signalling platform. Structurally, titin consists of a viscoelastic spring segment that allows activation-dependent coupling to actin. This titin-actin interaction can explain linear force increases in active lengthening experiments in biological systems. A three-filament model of skeletal muscle force production (mediated by titin) is supposed to overcome significant deviations between experimental observations and predictions by the classic sliding-filament and cross-bridge theories. Taken together, this review intends to contribute to a more detailed understanding of overall muscle behaviour and force generation-from a microscopic sarcomere level to a macroscopic multi-joint muscle level-impacting muscle modelling, the understanding of muscle function, and disease.


Subject(s)
Actins , Muscle Contraction , Connectin/metabolism , Actins/metabolism , Muscle Contraction/physiology , Muscle Fibers, Skeletal/metabolism , Sarcomeres/metabolism , Muscle, Skeletal/metabolism
4.
J R Soc Interface ; 19(197): 20220642, 2022 12.
Article in English | MEDLINE | ID: mdl-36475390

ABSTRACT

How myofilaments operate at short mammalian skeletal muscle lengths is unknown. A common assumption is that thick (myosin-containing) filaments get compressed at the Z-disc. We provide ultrastructural evidence of sarcomeres contracting down to 0.44 µm-approximately a quarter of thick filament resting length-in long-lasting contractions while apparently keeping a regular, parallel thick filament arrangement. Sarcomeres produced force at such extremely short lengths. Furthermore, sarcomeres adopted a bimodal length distribution with both modes below lengths where sarcomeres are expected to generate force in classic force-length measurements. Mammalian fibres did not restore resting length but remained short after deactivation, as previously reported for amphibian fibres, and showed increased forces during passive re-elongation. These findings are incompatible with viscoelastic thick filament compression but agree with predictions of a model incorporating thick filament sliding through the Z-disc. This more coherent picture of mechanical mammalian skeletal fibre functioning opens new perspectives on muscle physiology.

5.
J Appl Physiol (1985) ; 133(1): 223-233, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35652830

ABSTRACT

Ecccentric muscle contractions are fundamental to everyday life. They occur markedly in jumping, running, and accidents. Following an initial force rise, stretching of a fully activated muscle can result in a phase of decreasing force ("Give") followed by force redevelopment. However, how the stretch velocity affects "Give" and force redevelopment remains largely unknown. We investigated the force produced by fully activated single-skinned fibers of rat extensor digitorum longus muscles during long stretches. Fibers were pulled from length 0.85 to 1.3 optimal fiber length at a rate of 1%, 10%, and 100% of the estimated maximum shortening velocity. "Give" was absent in slow stretches. Medium and fast stretches yielded a clear "Give." After the initial force peak, forces decreased by 11.2% and 27.8% relative to the initial peak force before rising again. During the last half of the stretch (from 1.07 to 1.3 optimal fiber length, which is within the range of the expected descending limb of the force-length relationship), the linear force slope tripled from slow to medium stretch and increased further by 60% from medium to fast stretch. These results are compatible with forcible cross-bridge detachment and redevelopment of a cross-bridge distribution, and a viscoelastic titin contribution to fiber force. Accounting for these results can improve muscle models and predictions of multibody simulations.NEW & NOTEWORTHY Eccentric muscle contractions are part of our daily lives. We found that force increased monotonically during slow stretches of fully activated muscle fibers, whereas higher stretch velocities resulted in an increasing drop in force after an initial increase and a final steeper rise in force. Cross-bridges cannot explain the observed force traces. This requires a viscoelastic non-cross-bridge contribution. Considering these results can improve muscle models and predictions of multibody simulations.


Subject(s)
Muscle Contraction , Muscle Fibers, Skeletal , Animals , Mechanical Phenomena , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Rats
6.
Front Physiol ; 12: 644981, 2021.
Article in English | MEDLINE | ID: mdl-33868012

ABSTRACT

Muscle force, work, and power output during concentric contractions (active muscle shortening) are increased immediately following an eccentric contraction (active muscle lengthening). This increase in performance is known as the stretch-shortening cycle (SSC)-effect. Recent findings demonstrate that the SSC-effect is present in the sarcomere itself. More recently, it has been suggested that cross-bridge (XB) kinetics and non-cross-bridge (non-XB) structures (e.g., titin and nebulin) contribute to the SSC-effect. As XBs and non-XB structures are characterized by a velocity dependence, we investigated the impact of stretch-shortening velocity on the SSC-effect. Accordingly, we performed in vitro isovelocity ramp experiments with varying ramp velocities (30, 60, and 85% of maximum contraction velocity for both stretch and shortening) and constant stretch-shortening magnitudes (17% of the optimum sarcomere length) using single skinned fibers of rat soleus muscles. The different contributions of XB and non-XB structures to force production were identified using the XB-inhibitor Blebbistatin. We show that (i) the SSC-effect is velocity-dependent-since the power output increases with increasing SSC-velocity. (ii) The energy recovery (ratio of elastic energy storage and release in the SSC) is higher in the Blebbistatin condition compared with the control condition. The stored and released energy in the Blebbistatin condition can be explained by the viscoelastic properties of the non-XB structure titin. Consequently, our experimental findings suggest that the energy stored in titin during the eccentric phase contributes to the SSC-effect in a velocity-dependent manner.

7.
Front Physiol ; 11: 921, 2020.
Article in English | MEDLINE | ID: mdl-32848862

ABSTRACT

Stretch-shortening cycles (SSCs) refer to the muscle action when an active muscle stretch is immediately followed by active muscle shortening. This combination of eccentric and concentric contractions is the most important type of daily muscle action and plays a significant role in natural locomotion such as walking, running or jumping. SSCs are used in human and animal movements especially when a high movement speed or economy is required. A key feature of SSCs is the increase in muscular force and work during the concentric phase of a SSC by more than 50% compared with concentric muscle actions without prior stretch (SSC-effect). This improved muscle capability is related to various mechanisms, including pre-activation, stretch-reflex responses and elastic recoil from serial elastic tissues. Moreover, it is assumed that a significant contribution to enhanced muscle capability lies in the sarcomeres itself. Thus, we investigated the force output and work produced by single skinned fibers of rat soleus muscles during and after ramp contractions at a constant velocity. Shortening, lengthening, and SSCs were performed under physiological boundary conditions with 85% of the maximum shortening velocity and stretch-shortening magnitudes of 18% of the optimum muscle length. The different contributions of cross-bridge (XB) and non-cross-bridge (non-XB) structures to the total muscle force were identified by using Blebbistatin. The experiments revealed three main results: (i) partial detachment of XBs during the eccentric phase of a SSC, (ii) significantly enhanced forces and mechanical work during the concentric phase of SSCs compared with shortening contractions with and without XB-inhibition, and (iii) no residual force depression after SSCs. The results obtained by administering Blebbistatin propose a titin-actin interaction that depends on XB-binding or active XB-based force production. The findings of this study further suggest that enhanced forces generated during the active lengthening phase of SSCs persist during the subsequent shortening phase, thereby contributing to enhanced work. Accordingly, our data support the hypothesis that sarcomeric mechanisms related to residual force enhancement also contribute to the SSC-effect. The preload of the titin molecule, acting as molecular spring, might be part of that mechanism by increasing the mechanical efficiency of work during physiological SSCs.

8.
Proc Biol Sci ; 286(1903): 20190719, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31138072

ABSTRACT

Force enhancement (FE) is a phenomenon that is present in skeletal muscle. It is characterized by progressive forces upon active stretching-distinguished by a linear rise in force-and enhanced isometric force following stretching (residual FE (RFE)). In skeletal muscle, non-cross-bridge (XB) structures may account for this behaviour. So far, it is unknown whether differences between non-XB structures within the heart and skeletal muscle result in deviating contractile behaviour during and after eccentric contractions. Thus, we investigated the force response of intact cardiac trabeculae during and after isokinetic eccentric muscle contractions (10% of maximum shortening velocity) with extensive magnitudes of stretch (25% of optimum muscle length). The different contributions of XB and non-XB structures to the total muscle force were revealed by using an actomyosin inhibitor. For cardiac trabeculae, we found that the force-length dynamics during long stretch were similar to the total isometric force-length relation. This indicates that no (R)FE is present in cardiac muscle while stretching the muscle from 0.75 to 1.0 optimum muscle length. This finding is in contrast with the results obtained for skeletal muscle, in which (R)FE is present. Our data support the hypothesis that titin stiffness does not increase with activation in cardiac muscle.


Subject(s)
Connectin/metabolism , Heart/physiology , Myocardial Contraction/physiology , Myocardium/metabolism , Animals , Rats
9.
Front Physiol ; 10: 63, 2019.
Article in English | MEDLINE | ID: mdl-30787883

ABSTRACT

The urinary bladder is a distensible hollow muscular organ, which allows huge changes in size during absorption, storage and micturition. Pathological alterations of biomechanical properties can lead to bladder dysfunction and loss in quality of life. To understand and treat bladder diseases, the mechanisms of the healthy urinary bladder need to be determined. Thus, a series of studies focused on the detrusor muscle, a layer of urinary bladder made of smooth muscle fibers arranged in longitudinal and circumferential orientation. However, little is known about whether its active muscle properties differ depending on location and direction. This study aimed to investigate the porcine bladder for heterogeneous (six different locations) and anisotropic (longitudinal vs. circumferential) contractile properties including the force-length-(FLR) and force-velocity-relationship (FVR). Therefore, smooth muscle tissue strips with longitudinal and circumferential direction have been prepared from different bladder locations (apex dorsal, apex ventral, body dorsal, body ventral, trigone dorsal, trigone ventral). FLR and FVR have been determined by a series of isometric and isotonic contractions. Additionally, histological analyses were conducted to determine smooth muscle content and fiber orientation. Mechanical and histological examinations were carried out on 94 and 36 samples, respectively. The results showed that maximum active stress (pact ) of the bladder strips was higher in the longitudinal compared to the circumferential direction. This is in line with our histological investigation showing a higher smooth muscle content in the bladder strips in the longitudinal direction. However, normalization of maximum strip force by the cross-sectional area (CSA) of smooth muscle fibers yielded similar smooth muscle maximum stresses (165.4 ± 29.6 kPa), independent of strip direction. Active muscle properties (FLR, FVR) showed no locational differences. The trigone exhibited higher passive stress (ppass ) than the body. Moreover, the bladder exhibited greater ppass in the longitudinal than circumferential direction which might be attributed to its microstructure (more longitudinal arrangement of muscle fibers). This study provides a valuable dataset for the development of constitutive computational models of the healthy urinary bladder. These models are relevant from a medical standpoint, as they contribute to the basic understanding of the function of the bladder in health and disease.

10.
Front Physiol ; 8: 802, 2017.
Article in English | MEDLINE | ID: mdl-29093684

ABSTRACT

The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm2. Maximum shortening velocity (Vmax ) and curvature factor (curv) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant (P < 0.05) FD [up to 32% maximum muscle force (Fim )] and FE (up to 16% Fim ) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach smooth muscle parameters including classic biomechanical muscle properties and history-dependent effects, offering the possibility for the development and validation of computational stomach models. Furthermore, this data set facilitates novel insights in gastric motility and contraction behavior based on the re-evaluation of existing contractile mechanisms. That will likely help to understand physiological functions or dysfunctions in terms of gastric accommodation and emptying.

11.
J Mech Behav Biomed Mater ; 74: 507-519, 2017 10.
Article in English | MEDLINE | ID: mdl-28778781

ABSTRACT

Muscular contraction dynamics depends on active and passive muscle properties (e.g., the force-velocity relation) as well as on the three-dimensional (3D) muscle structure (e.g., the muscle fascicle architecture and aponeurosis dimensions). Much is known about active muscle force generation and the muscle architecture at a particular age (mostly for adult specimens), but less is known about changes in muscle structure during growth. The present study analyzed growth-related changes in the muscle structure of rabbit gastrocnemius lateralis (GL), gastrocnemius medialis (GM), flexor digitorum longus (FDL), and tibialis anterior (TA). Changes in tendon length, muscle belly dimensions (length, width, thickness), as well as aponeurosis length, width, and area were determined using 55 rabbits between 18 and 108 days old. Additionally, the 3D muscle fascicle architecture of five rabbits of different ages (21, 37, 50, 70, 100 days) was determined using a manual digitizer. We found an almost linear increase over time in most of the geometrical parameters observed. GL and GM showed very similar growth characteristics. In contrast to the pronounced increase in muscle belly length of GL and GM, FDL and TA exhibited more uniform muscle belly growth in length, width, and thickness. In general, the aponeuroses of the muscles exhibited lower growth rates in width than in length, and aponeurosis areas were larger than physiological cross-sectional areas. There were almost no changes in fascicle lengths with increasing age for GL, GM, and FDL. In contrast, there was a clear increase in TA fascicle length from about 20 to over 40mm. Pennation angles of TA (11.0 ± 2.1°) and FDL (16.7 ± 3.2°) remained almost unchanged but increased for GL from 13.4 ± 3.3° to 24.3 ± 6.5° from the youngest to the oldest animal. For all muscles observed, the tendon-muscle fascicle length ratio (rTFL) changed during growth. GL and GM exhibited similar increases in rTFL from about 4-8. FDL showed the highest ratio, which increased from about 8-13, whereas TA had the lowest ratio, which decreased slightly from 2 to 1.5. The outcomes demonstrate new findings regarding changes in 3D muscle architecture and aponeurosis shape during growth, and they provide information for muscle force generation, functional relevance, and adaptation with respect to animal age. Therefore, the results help to improve understanding of muscle growth processes and can be used as input data for muscle growth modeling.


Subject(s)
Hindlimb/anatomy & histology , Muscle, Skeletal/anatomy & histology , Animals , Female , Hindlimb/growth & development , Muscle Contraction , Muscle, Skeletal/growth & development , Rabbits
12.
Proc Biol Sci ; 284(1854)2017 May 17.
Article in English | MEDLINE | ID: mdl-28469023

ABSTRACT

In contrast to experimentally observed progressive forces in eccentric contractions, cross-bridge and sliding-filament theories of muscle contraction predict that varying myofilament overlap will lead to increases and decreases in active force during eccentric contractions. Non-cross-bridge contributions potentially explain the progressive total forces. However, it is not clear whether underlying abrupt changes in the slope of the nonlinear force-length relationship are visible in long isokinetic stretches, and in which proportion cross-bridges and non-cross-bridges contribute to muscle force. Here, we show that maximally activated single skinned rat muscle fibres behave (almost across the entire working range) like linear springs. The force slope is about three times the maximum isometric force per optimal length. Cross-bridge and non-cross-bridge contributions to the muscle force were investigated using an actomyosin inhibitor. The experiments revealed a nonlinear progressive contribution of non-cross-bridge forces and suggest a nonlinear cross-bridge contribution similar to the active force-length relationship (though with increased optimal length and maximum isometric force). The linear muscle behaviour might significantly reduce the control effort. Moreover, the observed slight increase in slope with initial length is in accordance with current models attributing the non-cross-bridge force to titin.


Subject(s)
Muscle Contraction , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Actin Cytoskeleton , Actomyosin/physiology , Animals , Connectin/physiology , Isometric Contraction , Rats
13.
Proc Biol Sci ; 283(1826): 20153030, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26936248

ABSTRACT

Striated muscle contraction requires intricate interactions of microstructures. The classic textbook assumption that myosin filaments are compressed at the meshed Z-disc during striated muscle fibre contraction conflicts with experimental evidence. For example, myosin filaments are too stiff to be compressed sufficiently by the muscular force, and, unlike compressed springs, the muscle fibres do not restore their resting length after contractions to short lengths. Further, the dependence of a fibre's maximum contraction velocity on sarcomere length is unexplained to date. In this paper, we present a structurally consistent model of sarcomere contraction that reconciles these findings with the well-accepted sliding filament and crossbridge theories. The few required model parameters are taken from the literature or obtained from reasoning based on structural arguments. In our model, the transition from hexagonal to tetragonal actin filament arrangement near the Z-disc together with a thoughtful titin arrangement enables myosin filament sliding through the Z-disc. This sliding leads to swivelled crossbridges in the adjacent half-sarcomere that dampen contraction. With no fitting of parameters required, the model predicts straightforwardly the fibre's entire force-length behaviour and the dependence of the maximum contraction velocity on sarcomere length. Our model enables a structurally and functionally consistent view of the contractile machinery of the striated fibre with possible implications for muscle diseases and evolution.


Subject(s)
Muscle Contraction , Myosins/metabolism , Sarcomeres/physiology , Animals , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...