Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-30, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299571

ABSTRACT

Study aimed to design and development of a supramolecular formulation of sulpiride (SUL) to enhance its solubility, dissolution and permeability by targeting a novel GlyT1 inhibition mechanism. SUL is commonly used to treat gastric and duodenal ulcers, migraine, anti-emetic, anti-depressive and anti-dyspeptic conditions. Additionally, Naringin (NARI) was incorporated as a co-former to enhance the drug's intestinal permeability by targeting P-glycoprotein (P-gp) efflux inhibition. NARI, a flavonoid has diverse biological activities, including anti-apoptotic, anti-oxidant, and anti-inflammatory properties. This study aims to design and develop a supramolecular formulation of SUL with NARI to enhance its solubility, dissolution, and permeability by targeting a novel GlyT1 inhibition mechanism, extensive experimental characterization was performed using solid-state experimental techniques in conjunction with a computational approach. This approach included quantum mechanics-based molecular dynamics (MD) simulation and density functional theory (DFT) studies to investigate intermolecular interactions, phase transformation and various electronic structure-based properties. The findings of the miscibility study, radial distribution function (RDF) analysis, quantitative simulations of hydrogen/π-π bond interactions and geometry optimization aided in comprehending the coamorphization aspects of SUL-NARI Supramolecular systems. Molecular docking and MD simulation were performed for detailed binding affinity assessment and target validation. The solubility, dissolution and ex-vivo permeability studies demonstrated significant improvements with 31.88-fold, 9.13-fold and 1.83-fold increments, respectively. Furthermore, biological assessments revealed superior neuroprotective effects in the SUL-NARI coamorphous system compared to pure SUL. In conclusion, this study highlights the advantages of a drug-nutraceutical supramolecular formulation for improving the solubility and permeability of SUL, targeting novel schizophrenia treatment approaches through combined computational and experimental analyses.Communicated by Ramaswamy H. Sarma.

2.
Int J Pharm ; 516(1-2): 120-130, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27989820

ABSTRACT

The present investigation aims to develop lumefantrine loaded binary solid lipid nanoparticles (LF-SLNs) to improve its poor and variable oral bioavailability. The oral bioavailability of LF is poor and variable due to its limited aqueous solubility and P-gp mediated efflux occurring in small intestine. LF-SLNs were prepared using binary lipid mixture of stearic acid and caprylic acid stabilized with TPGS (D-alpha tocopheryl polyethylene glycol 1000 succinate) and Poloxamer 188. Developed LF-SLNs were characterized for particle size distribution, zeta potential, entrapment efficiency, solid state properties and biopharmaceutical properties including in situ intestinal permeability and oral bioavailability. The particle size distribution, zeta potential and entrapment efficiency of optimized batch (LF-SLN7) was found to be 357.7±43.27nm, 25.29±1.15mV and 97.35±0.30%, respectively. DSC thermographs showed loss of crystalline nature of lumefantrine in LF-SLNs. In situ single pass intestinal permeability study (SPIP) study indicated significant enhancement in the effective intestinal permeability of LF from LF-SLN7 as compared to that of control. Pharmacokinetic study also showed significant increase in Cmax and area under curve (AUC0-∞) from LF-SLN7 (3860±521ng/mL and 43181±2557h×ng/mL, respectively) as compared to that of LF-control suspension (1425±563ng/mL and 19586±1537h×ng/mL, respectively). Thus, developed LF-SLNs can be promising to overcome P-gp efflux pump and enhance the oral bioavailability of lumefantrine.


Subject(s)
Antimalarials/administration & dosage , Ethanolamines/administration & dosage , Fluorenes/administration & dosage , Lipids/chemistry , Nanoparticles , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Administration, Oral , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Area Under Curve , Biological Availability , Calorimetry, Differential Scanning/methods , Crystallization , Ethanolamines/chemistry , Ethanolamines/pharmacokinetics , Fluorenes/chemistry , Fluorenes/pharmacokinetics , Intestinal Absorption , Lumefantrine , Male , Mice , Particle Size , Permeability , Rats , Rats, Sprague-Dawley , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...