Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 17: 156-165, 2021.
Article in English | MEDLINE | ID: mdl-33564326

ABSTRACT

In our hands, efficient access to the 4-amino-3-carboxamide disubstituted pyridine-2(1H)-one kinase hinge-binder motif proved to be more challenging than anticipated requiring a significant investment in route scouting and optimization. This full paper focuses on the synthesis issues that we encountered during our route exploration and the original solutions we found that helped us to identify two optimized library-style processes to prepare our large kinase inhibitor library.

2.
ACS Med Chem Lett ; 10(11): 1561-1567, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749911

ABSTRACT

Minor structural modifications-sometimes single atom changes-can have a dramatic impact on the properties of compounds. This is illustrated here on structures related to known mTOR inhibitor Sapanisertib. Subtle changes in the hinge binder lead to strikingly different overall profiles with changes in physical properties, metabolism, and kinase selectivity.

3.
Bioorg Med Chem Lett ; 28(17): 2985-2992, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30122227
4.
Bioorg Med Chem ; 26(4): 945-956, 2018 02 15.
Article in English | MEDLINE | ID: mdl-28818461

ABSTRACT

Targeting the TNFα pathway is a validated approach to the treatment of psoriasis. In this pathway, TACE stands out as a druggable target and has been the focus of in-house research programs. In this article, we present the discovery of clinical candidate 26a. Starting from hits plagued with poor solubility or genotoxicity, 26a was identified through thorough multiparameter optimisation. Showing robust in vivo activity in an oxazolone-mediated inflammation model, the compound was selected for development. Following a polymorph screen, the hydrochloride salt was selected and the synthesis was efficiently developed to yield the API in 47% overall yield.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Enzyme Inhibitors/chemistry , ADAM17 Protein/metabolism , Administration, Topical , Animals , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Female , Humans , Hydroxamic Acids/chemistry , Mice , Mice, Hairless , Microsomes, Liver/metabolism , Oxazolone/toxicity , Psoriasis/drug therapy , Psoriasis/pathology , Skin Diseases/chemically induced , Skin Diseases/prevention & control , Skin Diseases/veterinary , Solubility , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
5.
Chemistry ; 18(45): 14267-71, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23019072

ABSTRACT

The key is symmetry! A convergent synthetic approach of the highly cytotoxic natural product (-)-callystatin A was developed assembling three fragments through Julia-Kocienski olefination and Stille cross-coupling. The new strategy relies on a pivotal local symmetry of the target molecule. In this preliminary study, particular attention was devoted to facilitate the catalytic enantiocontrol of strategic stereogenic centers present in each of the fragments (see scheme).


Subject(s)
Fatty Acids, Unsaturated/chemistry , Alkenes/chemistry , Animals , Callyspongia/chemistry , Fatty Acids, Unsaturated/chemical synthesis , Stereoisomerism
6.
Chemistry ; 18(24): 7452-66, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22539235

ABSTRACT

The total synthesis of bistramide A and its 36(Z),39(S) and 36(Z),39(R) isomers shows that these compounds have different effects on cell division and apoptosis. The synthesis relies on a novel enol ether-forming reaction for the spiroketal fragment, a kinetic oxa-Michael cyclization reaction for the tetrahydropyran fragment, and an asymmetric crotonylation reaction for the amino acid fragment. Preliminary biological studies show a distinct pattern of influence of each of the three compounds on cell division, differentiation, and apoptosis in HL-60 cells, thus suggesting that these effects are independent activities of the natural product.


Subject(s)
Acetamides/chemical synthesis , Acetamides/pharmacology , Pyrans/chemical synthesis , Pyrans/pharmacology , Spiro Compounds/chemical synthesis , Acetamides/chemistry , Apoptosis/drug effects , Cell Division/drug effects , Cyclization , HL-60 Cells , Humans , Molecular Structure , Pyrans/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...