Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 114(9): 095001, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793819

ABSTRACT

Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-µm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3 GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

2.
Rev Sci Instrum ; 79(1): 013503, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18248030

ABSTRACT

We describe a compact, pulsed metal vapor source used for the production of dense plasma columns of interest for both soft x-ray laser research and spectroscopy of highly ionized plasmas. The source generates spectroscopically pure cadmium vapor jets in a room-temperature environment by rapidly heating an electrode with a capacitive discharge. In the configuration described herein, the metal vapor jet produced by the source is axially injected into a fast (up to 15 kA/ ns), high current (up to 200 kA peak) capillary discharge to generate highly ionized cadmium plasma columns. Spectroscopic analysis of the discharge emission in the 12-25 nm spectral range evidences the dominance of Cu-like (CdXX) and Ni-like (CdXXI) lines and shows strong line emission at 13.2 nm from the 4d (1)S(0)-4p (1)P(1) laser transition of Ni-like Cd. Hydrodynamic/atomic physics simulations performed to describe the dynamics of the plasma column and compute the optimum discharge conditions for laser amplification are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...