Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Phenomics ; 5: 0103, 2023.
Article in English | MEDLINE | ID: mdl-37850121

ABSTRACT

The development of unmanned aerial vehicle (UAV) remote sensing has been increasingly applied in forestry for high-throughput and rapid acquisition of tree phenomics traits for various research areas. However, the detection of individual trees and the extraction of their spectral data remain a challenge, often requiring manual annotation. Although several software-based solutions have been developed, they are far from being widely adopted. This paper presents ExtSpecR, an open-source tool for spectral extraction of a single tree in forestry with an easy-to-use interactive web application. ExtSpecR reduces the time required for single tree detection and annotation and simplifies the entire process of spectral and spatial feature extraction from UAV-based imagery. In addition, ExtSpecR provides several functionalities with interactive dashboards that allow users to maximize the quality of information extracted from UAV data. ExtSpecR can promote the practical use of UAV remote sensing data among forest ecology and tree breeding researchers and help them to further understand the relationships between tree growth and its physiological traits.

2.
Plant Phenomics ; 5: 0065, 2023.
Article in English | MEDLINE | ID: mdl-38235123

ABSTRACT

The density of new shoots on pine trees is an important indicator of their growth and photosynthetic capacity. However, traditional methods to monitor new shoot density rely on manual and destructive measurements, which are labor-intensive and have led to fewer studies on new shoot density. Therefore, in this study, we present user-friendly software called CountShoots, which extracts new shoot density in an easy and convenient way using unmanned aerial vehicles based on the YOLOX and Slash Pine Shoot Counting Network (SPSC-net) models. This software mainly consists of 2 steps. Firstly, we deployed a modified YOLOX model to identify the tree species and location from complex RGB background images, which yielded a high recognition accuracy of 99.15% and 95.47%. These results showed that our model produced higher detection accuracy compared to YOLOv5, Efficientnet, and Faster-RCNN models. Secondly, we constructed an SPSC-net. This methodology is based on the CCTrans network, which outperformed DM-Count, CSR-net, and MCNN models, with the lowest mean squared error and mean absolute error results among other models (i.e., 2.18 and 1.47, respectively). To our best knowledge, our work is the first research contribution to identify tree crowns and count new shoots automatically in slash pine. Our research outcome provides a highly efficient and rapid user-interactive pine tree new shoot detection and counting system for tree breeding and genetic use purposes.

3.
Plant Phenomics ; 2022: 9783785, 2022.
Article in English | MEDLINE | ID: mdl-35541565

ABSTRACT

Traditional methods used to monitor the aboveground biomass (AGB) and belowground biomass (BGB) of slash pine (Pinus elliottii) rely on on-ground measurements, which are time- and cost-consuming and suited only for small spatial scales. In this paper, we successfully applied unmanned aerial vehicle (UAV) integrated with structure from motion (UAV-SfM) data to estimate the tree height, crown area (CA), AGB, and BGB of slash pine for in slash pine breeding plantations sites. The CA of each tree was segmented by using marker-controlled watershed segmentation with a treetop and a set of minimum three meters heights. Moreover, the genetic variation of these traits has been analyzed and employed to estimate heritability (h 2). The results showed a promising correlation between UAV and ground truth data with a range of R 2 from 0.58 to 0.85 at 70 m flying heights and a moderate estimate of h 2 for all traits ranges from 0.13 to 0.47, where site influenced the h 2 value of slash pine trees, where h 2 in site 1 ranged from 0.13~0.25 lower than that in site 2 (range: 0.38~0.47). Similar genetic gains were obtained with both UAV and ground truth data; thus, breeding selection is still possible. The method described in this paper provides faster, more high-throughput, and more cost-effective UAV-SfM surveys to monitor a larger area of breeding plantations than traditional ground surveys while maintaining data accuracy.

4.
Plant Phenomics ; 2022: 9892728, 2022.
Article in English | MEDLINE | ID: mdl-35112084

ABSTRACT

The internal cycling of nitrogen (N) storage and consumption in trees is an important physiological mechanism associated with tree growth. Here, we examined the capability of near-infrared spectroscopy (NIR) to quantify the N concentration across tissue types (needle, trunk, branch, and root) without time and cost-consuming. The NIR spectral data of different tissues from slash pine trees were collected, and the N concentration in each tissue was determined using standard analytical method in laboratory. Partial least squares regression (PLSR) models were performed on a set of training data randomly selected. The full-length spectra and the significant multivariate correlation (sMC) variable selected spectra were used for model calibration. Branch, needle, and trunk PLSR models performed well for the N concentration using both full length and sMC selected NIR spectra. The generic model preformatted a reliable accuracy with R2 C and R2 CV of 0.62 and 0.66 using the full-length spectra, and 0.61 and 0.65 using sMC-selected spectra, respectively. Individual tissue models did not perform well when being used in other tissues. Five significantly important regions, i.e., 1480, 1650, 1744, 2170, and 2390 nm, were found highly related to the N content in plant tissues. This study evaluates a rapid and efficient method for the estimation of N content in different tissues that can help to serve as a tool for tree N storage and recompilation study.

5.
Front Plant Sci ; 12: 809828, 2021.
Article in English | MEDLINE | ID: mdl-35126433

ABSTRACT

Drought is a climatic event that considerably impacts plant growth, reproduction and productivity. Toona sinensis is a tree species with high economic, edible and medicinal value, and has drought resistance. Thus, the objective of this study was to dynamically monitor the physiological indicators of T. sinensis in real time to ensure the selection of drought-resistant varieties of T. sinensis. In this study, we used near-infrared spectroscopy as a high-throughput method along with five preprocessing methods combined with four variable selection approaches to establish a cross-validated partial least squares regression model to establish the relationship between the near infrared reflectance spectroscopy (NIRS) spectrum and physiological characteristics (i.e., chlorophyll content and nitrogen content) of T. sinensis leaves. We also tested optimal model prediction for the dynamic changes in T. sinensis chlorophyll and nitrogen content under five separate watering regimes to mimic non-destructive and dynamic detection of plant leaf physiological changes. Among them, the accuracy of the chlorophyll content prediction model was as high as 72%, with root mean square error (RMSE) of 0.25, and the RPD index above 2.26. Ideal nitrogen content prediction model should have R 2 of 0.63, with RMSE of 0.87, and the RPD index of 1.12. The results showed that the PLSR model has a good prediction effect. Overall, under diverse drought stress treatments, the chlorophyll content of T. sinensis leaves showed a decreasing trend over time. Furthermore, the chlorophyll content was the most stable under the 75% field capacity treatment. However, the nitrogen content of the plant leaves was found to have a different and variable trend, with the greatest drop in content under the 10% field capacity treatment. This study showed that NIRS has great potential for analyzing chlorophyll nitrogen and other elements in plant leaf tissues in non-destructive dynamic monitoring.

6.
Ecol Lett ; 22(6): 1038-1046, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30920165

ABSTRACT

The degree to which plant communities are vulnerable to invasion by alien species has often been assessed using the relationship between native and alien plant species richness (NAR). Variation in the direction and strength of the NAR tends to be negative for small plot sizes and study extents, but positive for large plots and extents. This invasion paradox has been attributed to different processes driving species richness at different spatial scales. However, the focus on plot size has drawn attention away from other factors influencing the NAR, in part because the influence of other factors may be obscured by or interact with plot size. Here, we test whether variation in the NAR can be explained by covariates linked to community susceptibility to invasion and whether these interact with plot size using a quantitative meta-analysis drawn from 87 field studies that examined 161 NARs. While plot size explained most variation, the NAR was less positive in grassland habitats and in the Australasian region. Other covariates did not show strong relationships with the NAR even after accounting for interactions with plot size. Instead, much of the unexplained variation is associated with article or author specific differences, suggesting the NAR depends strongly on how different authors choose their study system or study design.


Subject(s)
Biodiversity , Ecosystem , Plants , Research Design
7.
Proc Natl Acad Sci U S A ; 114(15): 3885-3890, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28289202

ABSTRACT

Increased regulation of chemical pesticides and rapid evolution of pesticide resistance have increased calls for sustainable pest management. Biological control offers sustainable pest suppression, partly because evolution of resistance to predators and parasitoids is prevented by several factors (e.g., spatial or temporal refuges from attacks, reciprocal evolution by control agents, and contrasting selection pressures from other enemy species). However, evolution of resistance may become more probable as agricultural intensification reduces the availability of refuges and diversity of enemy species, or if control agents have genetic barriers to evolution. Here we use 21 y of field data from 196 sites across New Zealand to show that parasitism of a key pasture pest (Listronotus bonariensis; Argentine stem weevil) by an introduced parasitoid (Microctonus hyperodae) was initially nationally successful but then declined by 44% (leading to pasture damage of c. 160 million New Zealand dollars per annum). This decline was not attributable to parasitoid numbers released, elevation, or local climatic variables at sample locations. Rather, in all locations the decline began 7 y (14 host generations) following parasitoid introduction, despite releases being staggered across locations in different years. Finally, we demonstrate experimentally that declining parasitism rates occurred in ryegrass Lolium perenne, which is grown nationwide in high-intensity was significantly less than in adjacent plots of a less-common pasture grass (Lolium multiflorum), indicating that resistance to parasitism is host plant-dependent. We conclude that low plant and enemy biodiversity in intensive large-scale agriculture may facilitate the evolution of host resistance by pests and threaten the long-term viability of biological control.


Subject(s)
Agriculture/methods , Pest Control, Biological/methods , Animals , Host-Parasite Interactions , Hymenoptera , Introduced Species , New Zealand , Weevils
8.
Front Plant Sci ; 7: 1259, 2016.
Article in English | MEDLINE | ID: mdl-27602040

ABSTRACT

Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990's. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect on parasitism rates under any treatment conditions suggesting that plant architecture may not be contributing to the underlying mechanism resulting in different rates of parasitism. The evolutionary implications of what appears to be plant-mediated resistance of L. bonariensis to parasitism by M. hyperodae are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...