Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5402, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443409

ABSTRACT

Cancer is one of the major causes of death worldwide and the development of multidrug resistance (MDR) in cancer cells is the principal cause of chemotherapy failure. To gain insights into the specific mechanisms of MDR in cancer cell lines, we developed a novel method for the combined analysis of recently published datasets on drug sensitivity and CRISPR loss-of-function screens for the same set of cancer cell lines. For our analysis, we first selected cell lines that consistently exhibit drug resistance across several classes of compounds. We then identified putative resistance genes for each class of compound and used inferred gene regulatory networks (GRNs) to study possible mechanisms underlying the development of MDR in the identified cancer cell lines. We show that the same method of analysis can also be used to identify cell lines that consistently exhibit resistance to the gene knockout effect of the CRISPR-Cas9 technique and to study the possible underlying mechanisms. In the GRN associated to the drug resistant cell lines, we identify genes previously associated with resistance (UHMK1, RALYL, MGST3, USP9X, and ESRG), genes for which an indirect association can be identified (SPINK13, LINC00664, MRPL38, and EMILIN3), and genes that are found to be overexpressed in non-resistant cancer cell lines (MRPL38, EMILIN3 and RALYL). In the GRNs associated to the CRISPR-Cas9 resistance mechanism, none of the identified genes has been previously reported in the admittedly sparse literature on the subject. However, some of these genes have a common role: APBB2, RUNX1T1, ZBTB7C, and ISX regulate transcription, while APBB2, BTG3, ZBTB7C, SZRD1 and LEF1 have a function in regulating proliferation, suggesting a role for these two pathways. While our results are specific for the lung cancer cell lines we selected for this work, our method of analysis can be applied to cell lines from other tissues and for which the required data is available.


Subject(s)
CRISPR-Cas Systems , Lung Neoplasms , Humans , Cell Line , Gene Knockout Techniques , Gene Regulatory Networks , Ubiquitin Thiolesterase , Intracellular Signaling Peptides and Proteins
2.
Elife ; 122023 09 27.
Article in English | MEDLINE | ID: mdl-37755167

ABSTRACT

Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb, using tRNA sequencing (tRNA-seq) and genome-mining. Homology searches identified 23 candidate tRNA modifying enzymes that are predicted to create 16 tRNA modifications across all tRNA species. Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of nine modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species. Furthermore, the absence of mnmA attenuated Mtb growth in macrophages, suggesting that MnmA-dependent tRNA uridine sulfation contributes to Mtb intracellular growth. Our results lay the foundation for unveiling the roles of tRNA modifications in Mtb pathogenesis and developing new therapeutics against tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , RNA Processing, Post-Transcriptional , Macrophages
3.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-36865327

ABSTRACT

Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis ( Mtb ), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb , using tRNA sequencing (tRNA-seq) and genome-mining. Homology searches identified 23 candidate tRNA modifying enzymes that are predicted to create 16 tRNA modifications across all tRNA species. Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of 9 modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species. Furthermore, the absence of mnmA attenuated Mtb growth in macrophages, suggesting that MnmA-dependent tRNA uridine sulfation contributes to Mtb intracellular growth. Our results lay the foundation for unveiling the roles of tRNA modifications in Mtb pathogenesis and developing new therapeutics against tuberculosis.

4.
mBio ; 14(1): e0346922, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36695586

ABSTRACT

Enzymes involved in rescuing stalled ribosomes and recycling translation machinery are ubiquitous in bacteria and required for growth. Peptidyl tRNA drop-off is a type of abortive translation that results in the release of a truncated peptide that is still bound to tRNA (peptidyl tRNA) into the cytoplasm. Peptidyl tRNA hydrolase (Pth) recycles the released tRNA by cleaving off the unfinished peptide and is essential in most bacteria. We developed a sequencing-based strategy called copper sulfate-based tRNA sequencing (Cu-tRNAseq) to study the physiological role of Pth in Mycobacterium tuberculosis (Mtb). While most peptidyl tRNA species accumulated in a strain with impaired Pth expression, peptidyl prolyl-tRNA was particularly enriched, suggesting that Pth is required for robust peptidyl prolyl-tRNA turnover. Reducing Pth levels increased Mtb's susceptibility to tRNA synthetase inhibitors that are in development to treat tuberculosis (TB) and rendered this pathogen highly susceptible to macrolides, drugs that are ordinarily ineffective against Mtb. Collectively, our findings reveal the potency of Cu-tRNAseq for profiling peptidyl tRNAs and suggest that targeting Pth would open new therapeutic approaches for TB. IMPORTANCE Peptidyl tRNA hydrolase (Pth) is an enzyme that cuts unfinished peptides off tRNA that has been prematurely released from a stalled ribosome. Pth is essential in nearly all bacteria, including the pathogen Mycobacterium tuberculosis (Mtb), but it has not been clear why. We have used genetic and novel biochemical approaches to show that when Pth levels decline in Mtb, peptidyl tRNA accumulates to such an extent that usable tRNA pools drop. Thus, Pth is needed to maintain normal tRNA levels, most strikingly for prolyl-tRNAs. Many antibiotics act on protein synthesis and could be affected by altering the availability of tRNA. This is certainly true for tRNA synthetase inhibitors, several of which are drug candidates for tuberculosis. We find that their action is potentiated by Pth depletion. Furthermore, Pth depletion results in hypersensitivity to macrolides, drugs that are not active enough under ordinary circumstances to be useful for tuberculosis.


Subject(s)
Amino Acyl-tRNA Synthetases , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , RNA, Transfer/genetics , Peptides , Amino Acyl-tRNA Synthetases/genetics , Hydrolases , Carboxylic Ester Hydrolases/metabolism
5.
Front Cell Infect Microbiol ; 12: 932556, 2022.
Article in English | MEDLINE | ID: mdl-36189351

ABSTRACT

Therapeutic advances in the 20th century significantly reduced tuberculosis (TB) mortality. Nonetheless, TB still poses a massive global health challenge with significant annual morbidity and mortality that has been amplified during the COVID-19 pandemic. Unlike most common bacterial infectious diseases, successful TB treatment requires months-long regimens, which complicates the ability to treat all cases quickly and effectively. Improving TB chemotherapy by reducing treatment duration and optimizing combinations of drugs is an important step to reducing relapse. In this review, we outline the limitations of current multidrug regimens against TB and have reviewed the genetic tools available to improve the identification of drug targets. The rational design of regimens that sterilize diverse phenotypic subpopulations will maximize bacterial killing while minimizing both treatment duration and infection relapse. Importantly, the TB field currently has all the necessary genetic and analytical tools to screen for and prioritize drug targets in vitro based on the vulnerability of essential and non-essential genes in the Mtb genome and to translate these findings in in vivo models. Combining genetic methods with chemical screens offers a formidable strategy to redefine the preclinical design of TB therapy by identifying powerful new targets altogether, as well as targets that lend new efficacy to existing drugs.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Humans , Mycobacterium tuberculosis/genetics , Pandemics , Recurrence
6.
Microbiol Spectr ; 10(3): e0058022, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35638832

ABSTRACT

Toxin-antitoxin (TA) systems allow bacteria to adapt to changing environments without altering gene expression. Despite being overrepresented in Mycobacterium tuberculosis, their physiological roles remain elusive. We describe a TA system in M. tuberculosis which we named TacAT due to its homology to previously discovered systems in Salmonella. The toxin, TacT, blocks growth by acetylating glycyl-tRNAs and inhibiting translation. Its effects are reversed by the enzyme peptidyl tRNA hydrolase (Pth), which also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. Pth is essential in most bacteria and thereby has been proposed as a promising drug target for complex pathogens like M. tuberculosis. Transposon sequencing data suggest that the tacAT operon is nonessential for M. tuberculosis growth in vitro, and premature stop mutations in this TA system present in some clinical isolates suggest that it is also dispensable in vivo. We assessed whether TacT modulates pth essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacAT is disrupted. We show that pth essentiality is unaffected by the absence of tacAT. These results highlight a fundamental aspect of mycobacterial biology and indicate that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics. IMPORTANCE The global rise in antibiotic-resistant tuberculosis has prompted an urgent search for new drugs. Toxin-antitoxin (TA) systems allow bacteria to adapt rapidly to environmental changes, and Mycobacterium tuberculosis encodes more TA systems than any known pathogen. We have characterized a new TA system in M. tuberculosis: the toxin, TacT, acetylates charged tRNA to block protein synthesis. TacT's effects are reversed by the essential bacterial enzyme peptidyl tRNA hydrolase (Pth), which is currently being explored as an antibiotic target. Pth also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. We assessed whether TacT modulates pth essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacT is disrupted. We show that pth essentiality is unaffected by the absence of this TA system, indicating that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics.


Subject(s)
Antitoxins , Bacterial Toxins , Mycobacterium tuberculosis , Tuberculosis , Anti-Bacterial Agents , Antitoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , RNA, Transfer/metabolism
7.
J Craniofac Surg ; 33(2): 665-668, 2022.
Article in English | MEDLINE | ID: mdl-33867510

ABSTRACT

INTRODUCTION: The actual role of landmarks labeling before three-dimensional (3D) facial acquisition is still debated. In this study, several measurements were compared among textured labeled (TL), unlabeled (NL), and untextured (NTL) 3D facial models. MATERIALS AND METHODS: The face of 50 subjects was acquired through stereophotogrammetry. Landmark coordinates were extracted from TL, NL, and NTL facial models, and 33 linear and angular measurements were calculated, together with surface area and volume. Accuracy of measurements among TL, NL, and NTL models was assessed through calculation of relative technical error of measurement (rTEM). The intra- and inter-observer errors for each type of facial model were calculated. RESULTS: Intra- and inter-observer error of measurements increased passing from textured to NTL and NL 3D models. Average rTEMs between TL models, and NTL and NL models were 4.5 ±â€Š2.6% and 4.7 ±â€Š2.8%, respectively, almost all measurements being classified as "very good" or "good." Only for orbital height and its inclination, mandibular ramus length, nasal convexity, alar slope angle, and facial divergence, rTEM was classified as "moderate" or "poor." CONCLUSIONS: Accuracy and precision of measurements decrease when landmarks are not previously labeled; attention must be taken when measurements have a low magnitude or involve landmarks requiring palpation.


Subject(s)
Imaging, Three-Dimensional , Photogrammetry , Anthropometry , Cephalometry/methods , Humans , Imaging, Three-Dimensional/methods , Reproducibility of Results
8.
J Bacteriol ; 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33361193

ABSTRACT

The recalcitrance of mycobacteria to antibiotic therapy is in part due to its ability to build proteins into a multi-layer cell wall. Proper synthesis of both cell wall constituents and associated proteins is crucial to maintaining cell integrity, and intimately tied to antibiotic susceptibility. How mycobacteria properly synthesize the membrane-associated proteome, however, remains poorly understood. Recently, we found that loss of lepA in Mycobacterium smegmatis (Msm) altered tolerance to rifampin, a drug that targets a non-ribosomal cellular process. LepA is a ribosome-associated GTPase found in bacteria, mitochondria, and chloroplasts, yet its physiological contribution to cellular processes is not clear. To uncover the determinants of LepA-mediated drug tolerance, we characterized the whole-cell proteomes and transcriptomes of a lepA deletion mutant relative to strains with lepA We find that LepA is important for the steady-state abundance of a number of membrane-associated proteins, including an outer membrane porin, MspA, which is integral to nutrient uptake and drug susceptibility. Loss of LepA leads to a decreased amount of porin in the membrane which leads to the drug tolerance phenotype of the lepA mutant. In mycobacteria, the translation factor LepA modulates mycobacterial membrane homeostasis, which in turn affects antibiotic tolerance.ImportanceThe mycobacterial cell wall is a promising target for new antibiotics due to the abundance of important membrane-associated proteins. Defining mechanisms of synthesis of the membrane proteome will be critical to uncovering and validating drug targets. We found that LepA, a universally conserved translation factor, controls the synthesis of a number of major membrane proteins in M. smegmatis LepA primarily controls synthesis of the major porin MspA. Loss of LepA results in decreased permeability through the loss of this porin, including permeability to antibiotics like rifampin and vancomycin. In mycobacteria, regulation from the ribosome is critical for the maintenance of membrane homeostasis and, importantly, antibiotic susceptibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...