Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37762480

ABSTRACT

Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent exopeptidase with broad specificity for four to eight amino acid residue substrates. It has a role in the regulation of oxidative stress response NRF2-KEAP1 pathway through the interaction with KEAP1. We have conducted stable isotope labeling by amino acids in a cell culture coupled to mass spectrometry (SILAC-MS) interactome analysis of TRex HEK293T cells using DPP3 as bait and identified SH2 Domain-Containing Protein 3C (SH2D3C) as prey. SH2D3C is one of three members of a family of proteins that contain both the SH2 domain and a domain similar to guanine nucleotide exchange factor domains of Ras family GTPases (Ras GEF-like domain), named novel SH2-containing proteins (NSP). NSPs, including SH2D3C (NSP3), are adaptor proteins involved in the regulation of adhesion, migration, tissue organization, and immune response. We have shown that SH2D3C binds to DPP3 through its C-terminal Ras GEF-like domain, detected the colocalization of the proteins in living cells, and confirmed direct interaction in the cytosol and membrane ruffles. Computational analysis also confirmed the binding of the C-terminal domain of SH2D3C to DPP3, but the exact model could not be discerned. This is the first indication that DPP3 and SH2D3C are interacting partners, and further studies to elucidate the physiological significance of this interaction are on the way.

2.
Beilstein J Org Chem ; 19: 550-565, 2023.
Article in English | MEDLINE | ID: mdl-37153642

ABSTRACT

Two novel conjugate molecules were designed: pyrene and phenanthridine-amino acid units with a different linker length between the aromatic fragments. Molecular modelling combined with spectrophotometric experiments revealed that in neutral and acidic buffered water solutions conjugates predominantly exist in intramolecularly stacked conformations because of the π-π stacking interaction between pyrene and phenanthridine moieties. The investigated systems exhibited a pH-dependent excimer formation that is significantly red-shifted relative to the pyrene and phenanthridine fluorescence. While the conjugate with a short linker showed negligible spectrophotometric changes due to the polynucleotide addition, the conjugate with a longer and more flexible linker exhibited a micromolar and submicromolar binding affinity for ds-polynucleotides and inactivated a mutant of dipeptidyl peptidase enzyme E451A. Confocal microscopy revealed that the conjugate with the longer linker entered the HeLa cell membranes and blue fluorescence was visualized as the dye accumulated in the cell membrane.

3.
Biomolecules ; 13(1)2023 01 07.
Article in English | MEDLINE | ID: mdl-36671513

ABSTRACT

The binding interactions of six ligands, neutral and monocationic asymmetric monomethine cyanine dyes comprising benzoselenazolyl moiety with duplex DNA and RNA and G-quadruplex structures were evaluated using fluorescence, UV/Vis (thermal melting) and circular dichroism (CD) spectroscopy. The main objective was to assess the impact of different substituents (methyl vs. sulfopropyl vs. thiopropyl/thioethyl) on the nitrogen atom of the benzothiazolyl chromophore on various nucleic acid structures. The monomethine cyanine dyes with methyl substituents showed a 100-fold selectivity for G-quadruplex versus duplex DNA. Study results indicate that cyanines bind with G-quadruplex via end π-π stacking interactions and possible additional interactions with nucleobases/phosphate backbone of grooves or loop bases. Cyanine with thioethyl substituent distinguishes duplex DNA and RNA and G-quadruplex structures by distinctly varying ICD signals. Furthermore, cell viability assay reveals the submicromolar activity of cyanines with methyl substituents against all tested human cancer cell lines. Confocal microscopy analysis shows preferential accumulation of cyanines with sulfopropyl and thioethyl substituents in mitochondria and indicates localization of cyanines with methyl in nucleus, particularly nucleolus. This confirms the potential of examined cyanines as theranostic agents, possessing both fluorescent properties and cell viability inhibitory effect.


Subject(s)
G-Quadruplexes , Selenium , Humans , Precision Medicine , DNA/chemistry , Circular Dichroism , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemistry , RNA
4.
Bioorg Chem ; 127: 105999, 2022 10.
Article in English | MEDLINE | ID: mdl-35809513

ABSTRACT

New monomethine, unsymmetrical styryl dyes consisting of benzothiazole and N-methylpiperazine or N-phenylpiperazine scaffolds were synthesized, and their binding affinities for different ds-polynucleotides and G-quadruplex were studied. Substitution of piperazine unit with methyl or phenyl group strongly influenced their binding modes, binding affinities, spectroscopic responses and antiproliferative activities. Compounds with N-methylpiperazine substituents showed a significant preference for AT-DNA polynucleotides and demonstrated AT-minor groove binding, which manifested in strong fluorescence increase, significant double helix stabilization, and positive induced circular dichroism spectra. These compounds formed complexes with G-quadruplex by π-π stacking interactions of dye with the top or bottom G-tetrad. Bulkier compounds with N-phenylpiperazine function are probably bound to ds-polynucleotide by partial intercalation between base pairs. On the other hand, they showed stronger stabilization of G-quadruplex compared to methyl-substituted compounds. Fluorimetric titrations pointed to possible mixed stoichiometry's: 1:1 complex with π-π stacking interactions of dye on the top or bottom G-tetrad and 1:2 complex with dye positioned between two G-quadruplex molecules. Bulkier dyes with N-phenylpiperazine fragments demonstrated micromolar and submicromolar antiproliferative activity that was especially pronounced for leukaemia and lymphoma. Flow cytometric assay shows dose- and time-dependent increase in SubG0/G1 phase. Furthermore, the compounds enter the cells readily and accumulate in the mitochondrial space, co-localize with the standard mitochondrial markers.


Subject(s)
Coloring Agents , G-Quadruplexes , DNA/chemistry , Ligands , Piperazines/pharmacology , Polynucleotides , Precision Medicine
5.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216111

ABSTRACT

Dipeptidyl peptidase III (DPP III) is associated with cancer progression via interaction with KEAP1, leading to upregulation of the KEAP1-NRF2 oxidative stress pathway. Numerous DPP III mutations have been found in human tumor genomes, and it is suggested that some of them may alter affinity for KEAP1. One such example is the DPP III-R623W variant, which in our previous study showed much higher affinity for the Kelch domain of KEAP1 than the wild-type protein. In this work, we have investigated the effects of this mutation in cultured cells and the effects of several other DPP III mutations on the stability of KEAP1-DPP III complex using an interdisciplinary approach combining biochemical, biophysical and molecular biology methods with computational studies. We determined the affinity of the DPP III variants for the Kelch domain experimentally and by molecular modeling, as well as the effects of the R623W on the expression of several NRF2-controlled genes. We confirmed that the R623W variant upregulates NQO1 expression at the transcriptional level. This supports the hypothesis from our previous study that the increased affinity of the R623W variant for KEAP1 leads to upregulation of the KEAP1-NRF2 pathway. These results provide a new perspective on the involvement of DPP III in cancer progression and prognosis.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Mutation/genetics , NF-E2-Related Factor 2/genetics , Neoplasms/genetics , Signal Transduction/genetics , Cell Line , HEK293 Cells , Humans , Interdisciplinary Studies , Oxidative Stress/genetics , Transcription, Genetic/genetics
6.
J Plant Physiol ; 243: 153048, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31639536

ABSTRACT

Investigations of the luminal immunophilin AtCYP38 (cyclophilin 38) in Arabidopsis thaliana (At), the orthologue of the complex immunophilin TLP40 from Spinacia oleracea, revealed its involvement in photosystem II (PSII) repair and assembly, biogenesis of PSII complex, and cellular signalling. However, the main physiological roles of AtCYP38 and TLP40 are related to regulation of thylakoid PP2A-type phosphatase involved in PSII core protein dephosphorylation, and chaperone function during protein folding. Here we further investigate physiological roles of AtCYP38 and analyse the ultrastructure of chloroplasts from cyp38-2 plants. Transmission electron microscopy followed by quantitative micrography revealed modifications in thylakoid stacking. We also confirm that the depletion of AtCYP38 influences PSII performance, which leads to stunted phenotype of cyp38-2 plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cyclophilins/genetics , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chloroplasts/ultrastructure , Cyclophilins/metabolism , Microscopy, Electron, Transmission
7.
PLoS One ; 13(2): e0192488, 2018.
Article in English | MEDLINE | ID: mdl-29420664

ABSTRACT

Dipeptidyl peptidase III (DPP III) isolated from the thermophilic bacteria Caldithrix abyssi (Ca) is a two-domain zinc exopeptidase, a member of the M49 family. Like other DPPs III, it cleaves dipeptides from the N-terminus of its substrates but differently from human, yeast and Bacteroides thetaiotaomicron (mesophile) orthologs, it has the pentapeptide zinc binding motif (HEISH) in the active site instead of the hexapeptide (HEXXGH). The aim of our study was to investigate structure, dynamics and activity of CaDPP III, as well as to find possible differences with already characterized DPPs III from mesophiles, especially B. thetaiotaomicron. The enzyme structure was determined by X-ray diffraction, while stability and flexibility were investigated using MD simulations. Using molecular modeling approach we determined the way of ligands binding into the enzyme active site and identified the possible reasons for the decreased substrate specificity compared to other DPPs III. The obtained results gave us possible explanation for higher stability, as well as higher temperature optimum of CaDPP III. The structural features explaining its altered substrate specificity are also given. The possible structural and catalytic significance of the HEISH motive, unique to CaDPP III, was studied computationally, comparing the results of long MD simulations of the wild type enzyme with those obtained for the HEISGH mutant. This study presents the first structural and biochemical characterization of DPP III from a thermophile.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Crystallography, X-Ray , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Enzyme Stability , Molecular Dynamics Simulation , Protein Conformation , Substrate Specificity , Temperature
8.
Protoplasma ; 253(2): 249-58, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25963286

ABSTRACT

Immunophilins occur in almost all living organisms. They are ubiquitously expressed proteins including cyclophilins, FK506/rapamycin-binding proteins, and parvulins. Their functional significance in vascular plants is mostly related to plant developmental processes, signalling, and regulation of photosynthesis. Enzymatically active immunophilins catalyse isomerization of proline imidic peptide bonds and assist in rapid folding of nascent proline-containing polypeptides. They also participate in protein trafficking and assembly of supramolecular protein complexes. Complex immunophilins possess various additional functional domains associated with a multitude of molecular interactions. A considerable number of immunophilins act as auxiliary and/or regulatory proteins in highly specialized cellular compartments, such as lumen of thylakoids. In this review, we present a comprehensive overview of so far identified chloroplast immunophilins that assist in specific assembly/repair processes necessary for the maintenance of efficient photosynthetic energy conversion.


Subject(s)
Chloroplasts/enzymology , Immunophilins/physiology , Plant Proteins/physiology , Chloroplasts/metabolism , Photosynthesis , Plants/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...