Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Yeast ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923089

ABSTRACT

To assess the immediate responses of the yeast cells to telomere defects, we employed the auxin-inducible degron (AID) enabling rapid depletion of essential (Rap1, Tbf1, Cdc13, Stn1) and non-essential (Est1, Est2, Est3) telomeric proteins. Using two variants of AID systems, we show that most of the studied proteins are depleted within 10-30 min after the addition of auxin. As expected, depletion of essential proteins yields nondividing cells, provided that the strains are cultivated in an appropriate carbon source and at temperatures lower than 28°C. Cells with depleted Cdc13 and Stn1 exhibit extension of the single-stranded overhang as early as 3 h after addition of auxin. Notably, prolonged incubation of strains carrying AID-tagged essential proteins in the presence of auxin resulted in the appearance of auxin-resistant clones, caused at least in part by mutations within the OsTIR1 gene. Upon assessing the length of telomeres in strains carrying AID-tagged non-essential telomeric proteins, we found that the depletion of Est1 and Est3 leads to auxin-dependent telomere shortening. However, the EST3-AID strain had slightly shorter telomeres even in the absence of auxin. Furthermore, a strain with the AID-tagged version of Est2 (catalytic subunit of telomerase) not only had shorter telomeres in the absence of auxin but also did not exhibit auxin-dependent telomere shortening. Our results demonstrate that while AID can be useful in assessing immediate cellular responses to telomere deprotection, each strain must be carefully evaluated for the effect of AID-tag on the properties of the protein of interest.

2.
DNA Res ; 31(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38686638

ABSTRACT

Lodderomyces beijingensis is an ascosporic ascomycetous yeast. In contrast to related species Lodderomyces elongisporus, which is a recently emerging human pathogen, L. beijingensis is associated with insects. To provide an insight into its genetic makeup, we investigated the genome of its type strain, CBS 14171. We demonstrate that this yeast is diploid and describe the high contiguity nuclear genome assembly consisting of eight chromosome-sized contigs with a total size of about 15.1 Mbp. We find that the genome sequence contains multiple copies of the mating type loci and codes for essential components of the mating pheromone response pathway, however, the missing orthologs of several genes involved in the meiotic program raise questions about the mode of sexual reproduction. We also show that L. beijingensis genome codes for the 3-oxoadipate pathway enzymes, which allow the assimilation of protocatechuate. In contrast, the GAL gene cluster underwent a decay resulting in an inability of L. beijingensis to utilize galactose. Moreover, we find that the 56.5 kbp long mitochondrial DNA is structurally similar to known linear mitochondrial genomes terminating on both sides with covalently closed single-stranded hairpins. Finally, we discovered a new double-stranded RNA mycovirus from the Totiviridae family and characterized its genome sequence.


Subject(s)
Chromosomes, Fungal , Genes, Mating Type, Fungal , Genome, Fungal , Chromosomes, Fungal/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism
4.
Genetics ; 224(3)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37183478

ABSTRACT

One powerful strategy of how to increase the complexity of cellular proteomes is through posttranslational modifications (PTMs) of proteins. Currently, there are ∼400 types of PTMs, the different combinations of which yield a large variety of protein isoforms with distinct biochemical properties. Although mitochondrial proteins undergoing PTMs were identified nearly 6 decades ago, studies on the roles and extent of PTMs on mitochondrial functions lagged behind the other cellular compartments. The application of mass spectrometry for the characterization of the mitochondrial proteome as well as for the detection of various PTMs resulted in the identification of thousands of amino acid positions that can be modified by different chemical groups. However, the data on mitochondrial PTMs are scattered in several data sets, and the available databases do not contain a complete list of modified residues. To integrate information on PTMs of the mitochondrial proteome of the yeast Saccharomyces cerevisiae, we built the yeast mitochondrial posttranslational modification (y-mtPTM) database (http://compbio.fmph.uniba.sk/y-mtptm/). It lists nearly 20,000 positions on mitochondrial proteins affected by ∼20 various PTMs, with phosphorylated, succinylated, acetylated, and ubiquitylated sites being the most abundant. A simple search of a protein of interest reveals the modified amino acid residues, their position within the primary sequence as well as on its 3D structure, and links to the source reference(s). The database will serve yeast mitochondrial researchers as a comprehensive platform to investigate the functional significance of the PTMs of mitochondrial proteins.


Subject(s)
Proteome , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Proteome/metabolism , Protein Processing, Post-Translational , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Amino Acids
5.
EMBO Rep ; 23(11): e55730, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36250930

ABSTRACT

Games and play are proven to be the most efficient means for children to learn. We should make greater efforts to use this tool for university teaching.


Subject(s)
Learning , Teaching , Child , Humans , Universities
6.
PLoS Genet ; 18(3): e1009815, 2022 03.
Article in English | MEDLINE | ID: mdl-35255079

ABSTRACT

Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in ß-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.


Subject(s)
Candida parapsilosis , Gentisates , Candida parapsilosis/metabolism , Carbon , Gentisates/metabolism , Hydroxybenzoates/metabolism , Phylogeny , Proteome/genetics , Proteomics , Saccharomyces cerevisiae/metabolism , Transcriptome/genetics
7.
CRISPR J ; 5(2): 181-186, 2022 04.
Article in English | MEDLINE | ID: mdl-35333620

ABSTRACT

CRISPR-Cas9 is a genome-editing technique that has been widely adopted thanks to its simplicity, efficiency, and broad application potential. Due to its advantages and pervasive use, there have been attempts to include this method in the existing curricula for students majoring in various disciplines of biology. In this perspective, we summarize the existing CRISPR-Cas courses that harness a well-established model organism: baker's yeast, Saccharomyces cerevisiae. As an example, we present a detailed description of a fully hands-on, flexible, robust, and cost-efficient practical CRISPR-Cas9 course, where students participate in yeast genome editing at every stage-from the bioinformatic design of single-guide RNA, through molecular cloning and yeast transformation, to the final confirmation of the introduced mutation. Finally, we emphasize that in addition to providing experimental skills and theoretical knowledge, the practical courses on CRISPR-Cas represent ideal platforms for discussing the ethical implications of the democratization of biology.


Subject(s)
CRISPR-Cas Systems , Saccharomyces cerevisiae , Biology , CRISPR-Cas Systems/genetics , Curriculum , Gene Editing/methods , Humans , Saccharomyces cerevisiae/genetics
8.
Genetics ; 219(2)2021 10 02.
Article in English | MEDLINE | ID: mdl-34849890

ABSTRACT

The evolution of eukaryotic organisms starting with the last eukaryotic common ancestor was accompanied by lineage-specific expansion of gene families. A paper by Garge et al. provides an excellent opportunity to have students explore how expansion of gene families via gene duplication results in protein specialization, in this case in the context of eukaryotic cytoskeletal organization . The authors tested hypotheses about conserved protein function by systematic "humanization" of the yeast cytoskeletal components while employing a wide variety of methodological approaches. We outline several exercises to promote students' ability to explore the genomic databases, perform bioinformatic analyses, design experiments for functional analysis of human genes in yeast and critically interpret results to address both specific and general questions.


Subject(s)
Cytoskeleton/genetics , Evolution, Molecular , Genetics/education , Cytoskeleton/metabolism , Humans , Yeasts/genetics
9.
J Biol Chem ; 297(4): 101155, 2021 10.
Article in English | MEDLINE | ID: mdl-34480900

ABSTRACT

Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue. In eukaryotes, it predominantly affects mitochondrial proteins because the donor of succinate, succinyl-CoA, is primarily generated in the tricarboxylic acid cycle. Although numerous succinylated mitochondrial proteins have been identified in Saccharomyces cerevisiae, a more detailed characterization of the yeast mitochondrial succinylome is still lacking. Here, we performed a proteomic MS analysis of purified yeast mitochondria and detected 314 succinylated mitochondrial proteins with 1763 novel succinylation sites. The mitochondrial nucleoid, a complex of mitochondrial DNA and mitochondrial proteins, is one of the structures whose protein components are affected by succinylation. We found that Abf2p, the principal component of mitochondrial nucleoids responsible for compacting mitochondrial DNA in S. cerevisiae, can be succinylated in vivo on at least thirteen lysine residues. Abf2p succinylation in vitro inhibits its DNA-binding activity and reduces its sensitivity to digestion by the ATP-dependent ScLon protease. We conclude that changes in the metabolic state of a cell resulting in an increase in the concentration of tricarboxylic acid intermediates may affect mitochondrial functions.


Subject(s)
DNA-Binding Proteins/metabolism , Mitochondrial Proteins/metabolism , Protease La/metabolism , Protein Processing, Post-Translational , Proteomics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Succinic Acid/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Protease La/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
10.
FEMS Yeast Res ; 21(5)2021 06 29.
Article in English | MEDLINE | ID: mdl-34089318

ABSTRACT

The 3-oxoacyl-CoA thiolases catalyze the last step of the fatty acid ß-oxidation pathway. In yeasts and plants, this pathway takes place exclusively in peroxisomes, whereas in animals it occurs in both peroxisomes and mitochondria. In contrast to baker's yeast Saccharomyces cerevisiae, yeast species from the Debaryomycetaceae family also encode a thiolase with predicted mitochondrial localization. These yeasts are able to utilize a range of hydroxyaromatic compounds via the 3-oxoadipate pathway the last step of which is catalyzed by 3-oxoadipyl-CoA thiolase and presumably occurs in mitochondria. In this work, we studied Oct1p, an ortholog of this enzyme from Candida parapsilosis. We found that the cells grown on a 3-oxoadipate pathway substrate exhibit increased levels of the OCT1 mRNA. Deletion of both OCT1 alleles impairs the growth of C. parapsilosis cells on 3-oxoadipate pathway substrates and this defect can be rescued by expression of the OCT1 gene from a plasmid vector. Subcellular localization experiments and LC-MS/MS analysis of enriched organellar fraction-proteins confirmed the presence of Oct1p in mitochondria. Phylogenetic profiling of Oct1p revealed an intricate evolutionary pattern indicating multiple horizontal gene transfers among different fungal groups.


Subject(s)
Saccharomyces cerevisiae , Tandem Mass Spectrometry , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acyltransferase/genetics , Animals , Chromatography, Liquid , Mitochondria , Phylogeny , Saccharomyces cerevisiae/genetics
11.
Genome Biol Evol ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33537752

ABSTRACT

In virtually every eukaryotic species, the ends of nuclear chromosomes are protected by telomeres, nucleoprotein structures counteracting the end-replication problem and suppressing recombination and undue DNA repair. Although in most cases, the primary structure of telomeric DNA is conserved, there are several exceptions to this rule. One is represented by the telomeric repeats of ascomycetous yeasts, which encompass a great variety of sequences, whose evolutionary origin has been puzzling for several decades. At present, the key questions concerning the driving force behind their rapid evolution and the means of co-evolution of telomeric repeats and telomere-binding proteins remain largely unanswered. Previously published studies addressed mostly the general concepts of the evolutionary origin of telomeres, key properties of telomeric proteins as well as the molecular mechanisms of telomere maintenance; however, the evolutionary process itself has not been analyzed thoroughly. Here, we aimed to inspect the evolution of telomeres in ascomycetous yeasts from the subphyla Saccharomycotina and Taphrinomycotina, with special focus on the evolutionary origin of species-specific telomeric repeats. We analyzed the sequences of telomeric repeats from 204 yeast species classified into 20 families and as a result, we propose a step-by-step model, which integrates the diversity of telomeric repeats, telomerase RNAs, telomere-binding protein complexes and explains a propensity of certain species to generate the repeat heterogeneity within a single telomeric array.


Subject(s)
Ascomycota/genetics , Evolution, Molecular , Telomere/chemistry , Ascomycota/classification , DNA, Fungal/chemistry , Genetic Variation , RNA, Untranslated/physiology , Repetitive Sequences, Nucleic Acid
12.
Mitochondrion ; 57: 148-162, 2021 03.
Article in English | MEDLINE | ID: mdl-33412333

ABSTRACT

Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.


Subject(s)
Mitochondrial Proteins/metabolism , Proteomics/methods , Saccharomyces cerevisiae/metabolism , Cell Fractionation , Gene Expression Regulation, Fungal , High-Throughput Screening Assays , Mass Spectrometry , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism
13.
Biomolecules ; 10(8)2020 08 16.
Article in English | MEDLINE | ID: mdl-32824374

ABSTRACT

Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.


Subject(s)
DNA, Mitochondrial/genetics , HMGB Proteins/metabolism , Mitochondrial Diseases/genetics , DNA, Mitochondrial/metabolism , Gene Expression Regulation , HMGB Proteins/chemistry , Humans , Mitochondria/genetics , Mitochondria/metabolism , Protein Binding
14.
DNA Repair (Amst) ; 94: 102901, 2020 10.
Article in English | MEDLINE | ID: mdl-32620538

ABSTRACT

Collaborative studies open doors to breakthroughs otherwise unattainable by any one laboratory alone. Here we describe the initial collaboration between the Griffith and de Lange laboratories that led to thinking about the telomere as a DNA template for homologous recombination, the proposal of telomere looping, and the first electron micrographs of t-loops. This was followed by collaborations that revealed t-loops across eukaryotic phyla. The Griffith and Tomáska/Nosek collaboration revealed circular telomeric DNA (t-circles) derived from the linear mitochondrial chromosomes of nonconventional yeast, which spurred discovery of t-circles in ALT-positive human cells. Collaborative work between the Griffith and McEachern labs demonstrated t-loops and t-circles in a series of yeast species. The de Lange and Zhuang laboratories then applied super-resolution light microscopy to demonstrate a genetic role for TRF2 in loop formation. Recent work from the Griffith laboratory linked telomere transcription with t-loop formation, providing a new model of the t-loop junction. A recent collaboration between the Cesare and Gaus laboratories utilized super-resolution light microscopy to provide details about t-loops as protective elements, followed by the Boulton and Cesare laboratories showing how cell cycle regulation of TRF2 and RTEL enables t-loop opening and reformation to promote telomere replication. Twenty years after the discovery of t-loops, we reflect on the collective history of their research as a case study in collaborative molecular biology.


Subject(s)
DNA Repair , DNA Replication , DNA, Circular/metabolism , Homologous Recombination , Single Molecule Imaging/history , Telomere/metabolism , Animals , DNA Breaks, Double-Stranded , DNA, Circular/ultrastructure , DNA-Binding Proteins/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Eukaryota/ultrastructure , History, 21st Century , Humans , Microscopy/history , Molecular Biology/history , Muscle Proteins/metabolism , TEA Domain Transcription Factors , Telomere/ultrastructure , Telomeric Repeat Binding Protein 2/metabolism , Transcription Factors/metabolism , Transcription, Genetic
15.
J Biol Chem ; 295(27): 8958-8971, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32385108

ABSTRACT

The ends of eukaryotic chromosomes typically contain a 3' ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in Saccharomyces cerevisiae, and the propensity of G-rich sequences to form various non-B DNA structures. Using CD and NMR spectroscopies, we show here that G-overhangs of S. cerevisiae form distinct Hoogsteen pairing-based secondary structures, depending on their length. Whereas short telomeric oligonucleotides form a G-hairpin, their longer counterparts form parallel and/or antiparallel G-quadruplexes (G4s). Regardless of their topologies, non-B DNA structures exhibited impaired binding to Cdc13 in vitro as demonstrated by electrophoretic mobility shift assays. Importantly, whereas G4 structures formed relatively quickly, G-hairpins folded extremely slowly, indicating that short G-overhangs, which are typical for most of the cell cycle, are present predominantly as single-stranded oligonucleotides and are suitable substrates for Cdc13. Using ChIP, we show that the occurrence of G4 structures peaks at the late S phase, thus correlating with the accumulation of long G-overhangs. We present a model of how time- and length-dependent formation of non-B DNA structures at chromosomal termini participates in telomere maintenance.


Subject(s)
Telomere Homeostasis/physiology , Telomere/metabolism , DNA/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Electrophoretic Mobility Shift Assay , G-Quadruplexes , Kinetics , Nucleic Acid Conformation , Oligonucleotides/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Telomerase/genetics , Telomere-Binding Proteins/metabolism
16.
J Mol Evol ; 88(4): 293-318, 2020 05.
Article in English | MEDLINE | ID: mdl-32157325

ABSTRACT

Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.


Subject(s)
Ants , Biological Coevolution , Telomere , Animals , DNA , Genome, Mitochondrial
17.
Front Microbiol ; 10: 2438, 2019.
Article in English | MEDLINE | ID: mdl-31708904

ABSTRACT

Experimental data indicate that during persistent infection, lymphocytic choriomeningitis virus (LCMV) may both directly or indirectly modulate regulatory cellular processes and alter cellular functions that are not critical for survival, but are essential for cell homeostasis. In order to shed more light on these processes, two-dimensional differential in-gel electrophoresis (2D-DIGE) and MALDI-TOF tandem mass spectrometry were used to determine the proteome response of the HeLa cell line to persistent LCMV infection. Quantitative analysis revealed 24 differentially abundant proteins. Functional analysis showed that LCMV-responsive proteins were primarily involved in metabolism, stress, and the defense response. Among identified proteins, we discovered significant changes for peroxiredoxins, a family of antioxidant enzymes. Decreased amount of these antioxidant proteins correlated with elevation of reactive oxygen species (ROS) in infected cells. Increased levels of ROS were accompanied by changes in the pattern of telomere restriction fragments (TRFs) in infected cells and mediated activation of hypoxia-inducible transcription factor-1 (HIF-1) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. Moreover, treatment with antioxidants resulted in reduced levels of viral nucleoprotein, indicating a connection between ROS-dependent signaling and viral replication.

18.
Front Genet ; 10: 792, 2019.
Article in English | MEDLINE | ID: mdl-31475042

ABSTRACT

Telomere loops (t-loops) are formed at the ends of chromosomes in species ranging from humans to worms, plants, and with genetic manipulation, some yeast. Recent in vitro studies demonstrated that transcription of telomeric DNA leads to highly efficient t-loop formation. It was also shown that both DNA termini are inserted into the preceding DNA to generate a highly stable t-loop junction. Furthermore, some telomeric RNA remains present at the junction, potentially acting as a plug to further protect and stabilize the t-loop. Modeling the loop junction reveals two mechanisms by which the canonical chromosomal replication factors could extend the telomere in the absence of telomerase. One mechanism would utilize the annealed 3' terminus as a de novo replication origin. In vitro evidence for the ability of the t-loop to prime telomere extension using the T7 replication factors is presented. A second mechanism would involve resolution of the Holliday junction present in the t-loop bubble by factors such as GEN1 to generate a rolling circle template at the extreme terminus of the telomere. This could lead to large expansions of the telomeric tract. Here, we propose that telomeres evolved as terminal elements containing long arrays of short nucleotide repeats due to the ability of such arrays to fold back into loops and self-prime their replicative extension. In this view, telomerase may have evolved later to provide a more precise mechanism of telomere maintenance. Both pathways have direct relevance to the alternative lengthening of telomeres (ALT) pathway. This view also provides a possible mechanism for the very large repeat expansions observed in nucleotide repeat diseases such as Fragile X syndrome, myotonic dystrophy, familial amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). The evolution of telomeres is discussed in the framework of these models.

19.
Sci Rep ; 9(1): 13365, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527614

ABSTRACT

Telomeric repeats in fungi of the subphylum Saccharomycotina exhibit great inter- and intra-species variability in length and sequence. Such variations challenged telomeric DNA-binding proteins that co-evolved to maintain their functions at telomeres. Here, we compare the extent of co-variations in telomeric repeats, encoded in the telomerase RNAs (TERs), and the repeat-binding proteins from 13 species belonging to the Yarrowia clade. We identified putative TER loci, analyzed their sequence and secondary structure conservation, and predicted functional elements. Moreover, in vivo complementation assays with mutant TERs showed the functional importance of four novel TER substructures. The TER-derived telomeric repeat unit of all species, except for one, is 10 bp long and can be represented as 5'-TTNNNNAGGG-3', with repeat sequence variations occuring primarily outside the vertebrate telomeric motif 5'-TTAGGG-3'. All species possess a homologue of the Yarrowia lipolytica Tay1 protein, YlTay1p. In vitro, YlTay1p displays comparable DNA-binding affinity to all repeat variants, suggesting a conserved role among these species. Taken together, these results add significant insights into the co-evolution of TERs, telomeric repeats and telomere-binding proteins in yeasts.


Subject(s)
Telomerase/genetics , Telomere-Binding Proteins/genetics , Yarrowia/genetics , Biological Evolution , DNA Repeat Expansion/genetics , Evolution, Molecular , Fungal Proteins/metabolism , RNA/genetics , Telomerase/metabolism , Telomere/metabolism
20.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30975801

ABSTRACT

Saprochaete fungicola is an arthroconidial yeast classified in the Magnusiomyces/Saprochaete clade of the subphylum Saccharomycotina. Here, we report the genome sequence of holotype strain CBS 625.85, assembled to five putative chromosomes. The genome sequence is 20.2 Mbp long and codes for 6,138 predicted proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...