Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1122063, 2023.
Article in English | MEDLINE | ID: mdl-37033990

ABSTRACT

CD4+CD25highFoxP3+ regulatory T cells (Tregs) constitute a small but substantial fraction of lymphocytes in the immune system. Tregs control inflammation associated with infections but also when it is improperly directed against its tissues or cells. The ability of Tregs to suppress (inhibit) the immune system is possible due to direct interactions with other cells but also in a paracrine fashion via the secretion of suppressive compounds. Today, attempts are made to use Tregs to treat autoimmune diseases, allergies, and rejection after bone marrow or organ transplantation. There is strong evidence that the metabolic program of Tregs is connected with the phenotype and function of these cells. A modulation towards a particular metabolic stage of Tregs may improve or weaken cells' stability and function. This may be an essential tool to drive the immune system keeping it activated during infections or suppressed when autoimmunity occurs.


Subject(s)
Autoimmune Diseases , T-Lymphocytes, Regulatory , Humans , Immune System , Autoimmunity
2.
Front Immunol ; 14: 1321228, 2023.
Article in English | MEDLINE | ID: mdl-38283365

ABSTRACT

The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.


Subject(s)
Autoimmune Diseases , T-Lymphocytes, Regulatory , Humans , Phenotype , Immune Tolerance , Forkhead Transcription Factors/genetics
3.
Front Immunol ; 13: 868175, 2022.
Article in English | MEDLINE | ID: mdl-35911739

ABSTRACT

Hypothesis: The activity of natural killer (NK) cells is considered an important factor for the tolerance of the fetus during pregnancy. The complications of pregnancy, such as hypertensive disorders (HDP), may be therefore associated with this immune compartment. Methods: The current study included 41 pregnant women diagnosed with HDPs (Gestational Hypertension; GH or Preeclampsia; PE) and 21 healthy women. All the patients were under continuous obstetric care during the pregnancy and labour. The number of mother-child mismatches within killer immunoglobulin-like receptors (KIRs), their ligands [MM], and missing KIR ligands [MSLs] was assessed. KIRs and their ligands were assessed with Next Generation Sequencing (NGS) and Polymerase Chain Reaction Sequence-Specific Oligonucleotide (PCR-SSO) typing. The subsets of NK cells were assessed with multicolor flow cytometry and correlated to the number of MSLs. Results: The number of MSLs was significantly higher in HDP patients when compared to healthy non-complicated pregnancy patients. Some MSLs, such as those with 2DS2 activating KIR, were present only in HDP patients. The percentage of CD56+CD16-CD94+ NK cells and CD56+CD16-CD279+ NK cells correlated with the number of MSLs with inhibiting KIRs only in healthy patients. In HDP patients, there was a correlation between the percentage of CD56-CD16+CD69+ NK cells and the number of MSLs with inhibiting and activating KIRs. As compared to the healthy group, the percentage of CD56+CD16-CD279+ NK cells and CD56-CD16+CD279+ NK cells were lower in HDP patients. HDP patients were also characterized by a higher percentage of CD56+CD16+perforin+ NK cells than their healthy counterparts. Conclusions: Patients with HDP were characterized by a higher number of MSLs within the KIRs receptors. It seemed that the number of MSLs in the healthy group was balanced by various receptors, such as CD94 or inhibitory CD279, expressed on NK cells. Conversely, in HDP patients the number of MSLs was associated with the activation detected as the increased level of CD69+ NK cells.


Subject(s)
Hypertension, Pregnancy-Induced , Receptors, KIR , Female , Humans , Hypertension, Pregnancy-Induced/metabolism , Killer Cells, Natural/metabolism , Ligands , Perforin/metabolism , Receptors, KIR/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...