Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 15(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37967251

ABSTRACT

Y chromosomal ampliconic genes (YAGs) are important for male fertility, as they encode proteins functioning in spermatogenesis. The variation in copy number and expression levels of these multicopy gene families has been studied in great apes; however, the diversity of splicing variants remains unexplored. Here, we deciphered the sequences of polyadenylated transcripts of all nine YAG families (BPY2, CDY, DAZ, HSFY, PRY, RBMY, TSPY, VCY, and XKRY) from testis samples of six great ape species (human, chimpanzee, bonobo, gorilla, Bornean orangutan, and Sumatran orangutan). To achieve this, we enriched YAG transcripts with capture probe hybridization and sequenced them with long (Pacific Biosciences) reads. Our analysis of this data set resulted in several findings. First, we observed evolutionarily conserved alternative splicing patterns for most YAG families except for BPY2 and PRY. Second, our results suggest that BPY2 transcripts and proteins originate from separate genomic regions in bonobo versus human, which is possibly facilitated by acquiring new promoters. Third, our analysis indicates that the PRY gene family, having the highest representation of noncoding transcripts, has been undergoing pseudogenization. Fourth, we have not detected signatures of selection in the five YAG families shared among great apes, even though we identified many species-specific protein-coding transcripts. Fifth, we predicted consensus disorder regions across most gene families and species, which could be used for future investigations of male infertility. Overall, our work illuminates the YAG isoform landscape and provides a genomic resource for future functional studies focusing on infertility phenotypes in humans and critically endangered great apes.


Subject(s)
Hominidae , Pan paniscus , Animals , Male , Humans , Pan paniscus/genetics , Hominidae/genetics , Y Chromosome/genetics , Pan troglodytes/genetics , Protein Isoforms/genetics
2.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993458

ABSTRACT

Y-chromosomal Ampliconic Genes (YAGs) are important for male fertility, as they encode proteins functioning in spermatogenesis. The variation in copy number and expression levels of these multicopy gene families has been recently studied in great apes, however, the diversity of splicing variants remains unexplored. Here we deciphered the sequences of polyadenylated transcripts of all nine YAG families (BPY2, CDY, DAZ, HSFY, PRY, RBMY, TSPY, VCY, and XKRY) from testis samples of six great ape species (human, chimpanzee, bonobo, gorilla, Bornean orangutan, and Sumatran orangutan). To achieve this, we enriched YAG transcripts with capture-probe hybridization and sequenced them with long (Pacific Biosciences) reads. Our analysis of this dataset resulted in several findings. First, we uncovered a high diversity of YAG transcripts across great apes. Second, we observed evolutionarily conserved alternative splicing patterns for most YAG families except for BPY2 and PRY. Our results suggest that BPY2 transcripts and predicted proteins in several great ape species (bonobo and the two orangutans) have independent evolutionary origins and are not homologous to human reference transcripts and proteins. In contrast, our results suggest that the PRY gene family, having the highest representation of transcripts without open reading frames, has been undergoing pseudogenization. Third, even though we have identified many species-specific protein-coding YAG transcripts, we have not detected any signatures of positive selection. Overall, our work illuminates the YAG isoform landscape and its evolutionary history, and provides a genomic resource for future functional studies focusing on infertility phenotypes in humans and critically endangered great apes.

3.
Proc Natl Acad Sci U S A ; 117(42): 26273-26280, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020265

ABSTRACT

The mammalian male-specific Y chromosome plays a critical role in sex determination and male fertility. However, because of its repetitive and haploid nature, it is frequently absent from genome assemblies and remains enigmatic. The Y chromosomes of great apes represent a particular puzzle: their gene content is more similar between human and gorilla than between human and chimpanzee, even though human and chimpanzee share a more recent common ancestor. To solve this puzzle, here we constructed a dataset including Ys from all extant great ape genera. We generated assemblies of bonobo and orangutan Ys from short and long sequencing reads and aligned them with the publicly available human, chimpanzee, and gorilla Y assemblies. Analyzing this dataset, we found that the genus Pan, which includes chimpanzee and bonobo, experienced accelerated substitution rates. Pan also exhibited elevated gene death rates. These observations are consistent with high levels of sperm competition in Pan Furthermore, we inferred that the great ape common ancestor already possessed multicopy sequences homologous to most human and chimpanzee palindromes. Nonetheless, each species also acquired distinct ampliconic sequences. We also detected increased chromatin contacts between and within palindromes (from Hi-C data), likely facilitating gene conversion and structural rearrangements. Our results highlight the dynamic mode of Y chromosome evolution and open avenues for studies of male-specific dispersal in endangered great ape species.


Subject(s)
Hominidae/genetics , Y Chromosome/genetics , Animals , Biological Evolution , Evolution, Molecular , Gene Conversion , Gorilla gorilla/genetics , Humans , Pan paniscus/genetics , Pan troglodytes/genetics , Pongo/genetics , Sequence Analysis, DNA
4.
Genome Biol Evol ; 12(6): 842-859, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32374870

ABSTRACT

Multicopy ampliconic gene families on the Y chromosome play an important role in spermatogenesis. Thus, studying their genetic variation in endangered great ape species is critical. We estimated the sizes (copy number) of nine Y ampliconic gene families in population samples of chimpanzee, bonobo, and orangutan with droplet digital polymerase chain reaction, combined these estimates with published data for human and gorilla, and produced genome-wide testis gene expression data for great apes. Analyzing this comprehensive data set within an evolutionary framework, we, first, found high inter- and intraspecific variation in gene family size, with larger families exhibiting higher variation as compared with smaller families, a pattern consistent with random genetic drift. Second, for four gene families, we observed significant interspecific size differences, sometimes even between sister species-chimpanzee and bonobo. Third, despite substantial variation in copy number, Y ampliconic gene families' expression levels did not differ significantly among species, suggesting dosage regulation. Fourth, for three gene families, size was positively correlated with gene expression levels across species, suggesting that, given sufficient evolutionary time, copy number influences gene expression. Our results indicate high variability in size but conservation in gene expression levels in Y ampliconic gene families, significantly advancing our understanding of Y-chromosome evolution in great apes.


Subject(s)
Biological Evolution , Gene Dosage , Gene Expression , Hominidae/genetics , Y Chromosome , Animals , Hominidae/metabolism , Male , Multigene Family
5.
PLoS Genet ; 15(9): e1008369, 2019 09.
Article in English | MEDLINE | ID: mdl-31525193

ABSTRACT

The Y chromosome harbors nine multi-copy ampliconic gene families expressed exclusively in testis. The gene copies within each family are >99% identical to each other, which poses a major challenge in evaluating their copy number. Recent studies demonstrated high variation in Y ampliconic gene copy number among humans. However, how this variation affects expression levels in human testis remains understudied. Here we developed a novel computational tool Ampliconic Copy Number Estimator (AmpliCoNE) that utilizes read sequencing depth information to estimate Y ampliconic gene copy number per family. We applied this tool to whole-genome sequencing data of 149 men with matched testis expression data whose samples are part of the Genotype-Tissue Expression (GTEx) project. We found that the Y ampliconic gene families with low copy number in humans were deleted or pseudogenized in non-human great apes, suggesting relaxation of functional constraints. Among the Y ampliconic gene families, higher copy number leads to higher expression. Within the Y ampliconic gene families, copy number does not influence gene expression, rather a high tolerance for variation in gene expression was observed in testis of presumably healthy men. No differences in gene expression levels were found among major Y haplogroups. Age positively correlated with expression levels of the HSFY and PRY gene families in the African subhaplogroup E1b, but not in the European subhaplogroups R1b and I1. We also found that expression of five Y ampliconic gene families is coordinated with that of their non-Y (i.e. X or autosomal) homologs. Indeed, five ampliconic gene families had consistently lower expression levels when compared to their non-Y homologs suggesting dosage regulation, while the HSFY family had higher expression levels than its X homolog and thus lacked dosage regulation.


Subject(s)
Chromosomes, Human, Y/genetics , Genes, Y-Linked/genetics , Sequence Analysis, DNA/methods , Animals , Chromosomes, Human, Y/physiology , DNA Copy Number Variations/genetics , Databases, Genetic , Dosage Compensation, Genetic/genetics , Dosage Compensation, Genetic/physiology , Epigenesis, Genetic/genetics , Gene Dosage/genetics , Gene Expression/genetics , Gene Expression Regulation/genetics , Genes, Y-Linked/physiology , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Humans , Male , Multigene Family/genetics , Testis/metabolism
6.
BMC Genomics ; 20(1): 641, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31399045

ABSTRACT

BACKGROUND: Although the Y chromosome plays an important role in male sex determination and fertility, it is currently understudied due to its haploid and repetitive nature. Methods to isolate Y-specific contigs from a whole-genome assembly broadly fall into two categories. The first involves retrieving Y-contigs using proportion sharing with a female, but such a strategy is prone to false positives in the absence of a high-quality, complete female reference. A second strategy uses the ratio of depth of coverage from male and female reads to select Y-contigs, but such a method requires high-depth sequencing of a female and cannot utilize existing female references. RESULTS: We develop a k-mer based method called DiscoverY, which combines proportion sharing with female with depth of coverage from male reads to classify contigs as Y-chromosomal. We evaluate the performance of DiscoverY on human and gorilla genomes, across different sequencing platforms including Illumina, 10X, and PacBio. In the cases where the male and female data are of high quality, DiscoverY has a high precision and recall and outperforms existing methods. For cases when a high quality female reference is not available, we quantify the effect of using draft reference or even just raw sequencing reads from a female. CONCLUSION: DiscoverY is an effective method to isolate Y-specific contigs from a whole-genome assembly. However, regions homologous to the X chromosome remain difficult to detect.


Subject(s)
Chromosomes, Human, Y/genetics , Sequence Analysis, DNA/methods , Female , Haploidy , Humans , Male , Sequence Analysis, DNA/economics , Time Factors
7.
Mol Biol Evol ; 36(11): 2415-2431, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31273383

ABSTRACT

Satellite repeats are a structural component of centromeres and telomeres, and in some instances, their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50 bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: 1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and 2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However, clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males versus females; using Y chromosome assemblies or Fluorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59 kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions.

8.
Nat Commun ; 9(1): 4601, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389934

ABSTRACT

A significant portion of genes in vertebrate genomes belongs to multigene families, with each family containing several gene copies whose presence/absence, as well as isoform structure, can be highly variable across individuals. Existing de novo techniques for assaying the sequences of such highly-similar gene families fall short of reconstructing end-to-end transcripts with nucleotide-level precision or assigning alternatively spliced transcripts to their respective gene copies. We present IsoCon, a high-precision method using long PacBio Iso-Seq reads to tackle this challenge. We apply IsoCon to nine Y chromosome ampliconic gene families and show that it outperforms existing methods on both experimental and simulated data. IsoCon has allowed us to detect an unprecedented number of novel isoforms and has opened the door for unraveling the structure of many multigene families and gaining a deeper understanding of genome evolution and human diseases.


Subject(s)
Algorithms , Multigene Family , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , Aged , Computer Simulation , Exons/genetics , Fragile X Mental Retardation Protein/genetics , Gene Dosage , Humans , Male , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Testis/metabolism
9.
Genome Biol Evol ; 10(5): 1333-1350, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29718380

ABSTRACT

Because of its highly repetitive nature, the human male-specific Y chromosome remains understudied. It is important to investigate variation on the Y chromosome to understand its evolution and contribution to phenotypic variation, including infertility. Approximately 20% of the human Y chromosome consists of ampliconic regions which include nine multi-copy gene families. These gene families are expressed exclusively in testes and usually implicated in spermatogenesis. Here, to gain a better understanding of the role of the Y chromosome in human evolution and in determining sexually dimorphic traits, we studied ampliconic gene copy number variation in 100 males representing ten major Y haplogroups world-wide. Copy number was estimated with droplet digital PCR. In contrast to low nucleotide diversity observed on the Y in previous studies, here we show that ampliconic gene copy number diversity is very high. A total of 98 copy-number-based haplotypes were observed among 100 individuals, and haplotypes were sometimes shared by males from very different haplogroups, suggesting homoplasies. The resulting haplotypes did not cluster according to major Y haplogroups. Overall, only two gene families (RBMY and TSPY) showed significant differences in copy number among major Y haplogroups, and the haplogroup of a male could not be predicted based on his ampliconic gene copy numbers. Finally, we did not find significant correlations either between copy number variation and individual's height, or between the former and facial masculinity/femininity. Our results suggest rapid evolution of ampliconic gene copy numbers on the human Y, and we discuss its causes.


Subject(s)
Body Height , Chromosomes, Human, Y , DNA Copy Number Variations , Gene Amplification , Masculinity , Evolution, Molecular , Genome, Human , Haplotypes , Humans , Male , Multigene Family , Phenotype
10.
Bioinformatics ; 34(7): 1125-1131, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29194476

ABSTRACT

Motivation: The haploid mammalian Y chromosome is usually under-represented in genome assemblies due to high repeat content and low depth due to its haploid nature. One strategy to ameliorate the low coverage of Y sequences is to experimentally enrich Y-specific material before assembly. As the enrichment process is imperfect, algorithms are needed to identify putative Y-specific reads prior to downstream assembly. A strategy that uses k-mer abundances to identify such reads was used to assemble the gorilla Y. However, the strategy required the manual setting of key parameters, a time-consuming process leading to sub-optimal assemblies. Results: We develop a method, RecoverY, that selects Y-specific reads by automatically choosing the abundance level at which a k-mer is deemed to originate from the Y. This algorithm uses prior knowledge about the Y chromosome of a related species or known Y transcript sequences. We evaluate RecoverY on both simulated and real data, for human and gorilla, and investigate its robustness to important parameters. We show that RecoverY leads to a vastly superior assembly compared to alternate strategies of filtering the reads or contigs. Compared to the preliminary strategy used by Tomaszkiewicz et al., we achieve a 33% improvement in assembly size and a 20% improvement in the NG50, demonstrating the power of automatic parameter selection. Availability and implementation: Our tool RecoverY is freely available at https://github.com/makovalab-psu/RecoverY. Contact: kmakova@bx.psu.edu or pashadag@cse.psu.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software , Y Chromosome , Algorithms , Animals , Chromosomes, Mammalian , Genomics/methods , Gorilla gorilla/genetics , Humans , Male , Mammals
11.
Trends Genet ; 33(4): 266-282, 2017 04.
Article in English | MEDLINE | ID: mdl-28236503

ABSTRACT

Hundreds of vertebrate genomes have been sequenced and assembled to date. However, most sequencing projects have ignored the sex chromosomes unique to the heterogametic sex - Y and W - that are known as sex-limited chromosomes (SLCs). Indeed, haploid and repetitive Y chromosomes in species with male heterogamety (XY), and W chromosomes in species with female heterogamety (ZW), are difficult to sequence and assemble. Nevertheless, obtaining their sequences is important for understanding the intricacies of vertebrate genome function and evolution. Recent progress has been made towards the adaptation of next-generation sequencing (NGS) techniques to deciphering SLC sequences. We review here currently available methodology and results with regard to SLC sequencing and assembly. We focus on vertebrates, but bring in some examples from other taxa.


Subject(s)
Evolution, Molecular , Sex Chromosomes/genetics , Sex Determination Processes , Y Chromosome/genetics , Animals , Female , Genome , High-Throughput Nucleotide Sequencing , Male
12.
Mol Biol Evol ; 33(10): 2744-58, 2016 10.
Article in English | MEDLINE | ID: mdl-27413049

ABSTRACT

Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA-DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD.


Subject(s)
DNA/genetics , Microsatellite Repeats , RNA/genetics , Reverse Transcription , Alleles , DNA Repair , Genetic Variation , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, RNA , Transcriptome
13.
Genome Res ; 26(4): 530-40, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26934921

ABSTRACT

The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.


Subject(s)
Computational Biology , High-Throughput Nucleotide Sequencing , Mammals/genetics , Y Chromosome , Animals , Computational Biology/methods , Gene Rearrangement , Genome , Genomics , Gorilla gorilla/genetics , Humans , Inverted Repeat Sequences , Male , Microsatellite Repeats , Pan troglodytes/genetics , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA
14.
BMC Genet ; 15: 44, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24712907

ABSTRACT

BACKGROUND: Teleost fish present a high diversity of sex determination systems, with possible frequent evolutionary turnover of sex chromosomes and sex-determining genes. In order to identify genes involved in male sex determination and differentiation in the platyfish Xiphophorus maculatus, bacterial artificial chromosome contigs from the sex-determining region differentiating the Y from the X chromosome have been assembled and analyzed. RESULTS: A novel three-copy gene called teximY (for testis-expressed in Xiphophorus maculatus on the Y) was identified on the Y but not on the X chromosome. A highly related sequence called texim1, probably at the origin of the Y-linked genes, as well as three more divergent texim genes were detected in (pseudo)autosomal regions of the platyfish genome. Texim genes, for which no functional data are available so far in any organism, encode predicted esterases/lipases with a SGNH hydrolase domain. Texim proteins are related to proteins from very different origins, including proteins encoded by animal CR1 retrotransposons, animal platelet-activating factor acetylhydrolases (PAFah) and bacterial hydrolases. Texim gene distribution is patchy in animals. Texim sequences were detected in several fish species including killifish, medaka, pufferfish, sea bass, cod and gar, but not in zebrafish. Texim-like genes are also present in Oikopleura (urochordate), Amphioxus (cephalochordate) and sea urchin (echinoderm) but absent from mammals and other tetrapods. Interestingly, texim genes are associated with a Helitron transposon in different fish species but not in urochordates, cephalochordates and echinoderms, suggesting capture and mobilization of an ancestral texim gene in the bony fish lineage. RT-qPCR analyses showed that Y-linked teximY genes are preferentially expressed in testis, with expression at late stages of spermatogenesis (late spermatids and spermatozeugmata). CONCLUSIONS: These observations suggest either that TeximY proteins play a role in Helitron transposition in the male germ line in fish, or that texim genes are spermatogenesis genes mobilized and spread by transposable elements in fish genomes.


Subject(s)
Cyprinodontiformes/genetics , DNA Transposable Elements , Genes, Duplicate , Hydrolases/genetics , Testis/enzymology , Y Chromosome/genetics , Amino Acid Sequence , Animals , Conserved Sequence , Exons , Female , Fish Proteins/genetics , Introns , Male , Molecular Sequence Data , Phylogeny , Sex Determination Processes
15.
Integr Zool ; 4(3): 277-84, 2009 Sep.
Article in English | MEDLINE | ID: mdl-21392300

ABSTRACT

In contrast to mammals and birds, fish display an amazing diversity of genetic sex determination systems, with frequent changes during evolution possibly associated with the emergence of new sex chromosomes and sex-determining genes. To better understand the molecular and evolutionary mechanisms driving this diversity, several fish models are studied in parallel. Besides the medaka (Oryzias latipes Temminck and Schlegel, 1846) for which the master sex-determination gene has been identified, one of the most advanced models for studying sex determination is the Southern platyfish (Xiphophorus maculatus, Günther 1966). Xiphophorus maculatus belongs to the Poeciliids, a family of live-bearing freshwater fish, including platyfish, swordtails and guppies that perfectly illustrates the diversity of genetic sex-determination mechanisms observed in teleosts. For X. maculatus, bacterial artificial chromosome contigs covering the sex-determination region of the X and Y sex chromosomes have been constructed. Initial molecular analysis demonstrated that the sex-determination region is very unstable and frequently undergoes duplications, deletions, inversions and other rearrangements. Eleven gene candidates linked to the master sex-determining gene have been identified, some of them corresponding to pseudogenes. All putative genes are present on both the X and the Y chromosomes, suggesting a poor degree of differentiation and a young evolutionary age for platyfish sex chromosomes. When compared with other fish and tetrapod genomes, syntenies were detected only with autosomes. This observation supports an independent origin of sex chromosomes, not only in different vertebrate lineages but also between different fish species.


Subject(s)
Cyprinodontiformes/genetics , Evolution, Molecular , Sex Chromosomes/genetics , Sex Determination Processes/genetics , Animals , Chromosomes, Artificial, Bacterial , Synteny/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...