Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(48): 6150-6153, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804255

ABSTRACT

Iron-binding strategies in anticancer drug design target the key role of iron in cancer growth. The incorporation of a quinoline moiety in the design of tetrazolium-based prochelators facilitates their intracellular reduction/activation to iron-binding formazans. The new prochelators are antiproliferative at submicromolar levels, induce apoptosis and cell cycle arrest, and impact iron signaling in cancer cells.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Iron , Quinolines , Humans , Quinolines/chemistry , Quinolines/pharmacology , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Iron/chemistry , Iron/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure , Cell Cycle Checkpoints/drug effects
2.
J Phys Chem Lett ; 14(50): 11268-11273, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38060441

ABSTRACT

Radicals and other open-shell molecules play a central role in chemical transformations and redox chemistry. While radicals are often highly reactive, stable radical systems are desirable for a range of potential applications, ranging from materials chemistry and catalysis to spintronics and quantum information. Here we investigate the ultrafast properties of a stable radical system with temperature-dependent spin-tunable properties. This radical complex, Cu(II) hexaethyl tripyrrin-1,14-dione, accommodates unpaired electrons localized on both the copper metal center and the tripyrrolic ligand. The unusual combination of two unpaired electrons and high stability in this radical molecule enable switchable temperature-dependent spin coupling. Two-dimensional electronic spectroscopy measurements of Cu(II) hexaethyl tripyrrin-1,14-dione were collected at room temperature and at 77 K. At room temperature, the molecules are present as monomers and have short picosecond lifetimes. At 77 K, the molecules are present in a dimer form mediated by ferromagnetic and antiferromagnetic coupling. This reversible spin-driven dimerization changes the optical properties of the system, generating long-lived excitonic states.

3.
J Thromb Thrombolysis ; 56(3): 398-410, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37432612

ABSTRACT

Cardiovascular therapeutic devices (CTDs) remain limited by thrombotic adverse events. Current antithrombotic agents limit thrombosis partially, often adding to bleeding. The Impella® blood pump utilizes heparin in 5% dextrose (D5W) as an internal purge to limit thrombosis. While effective, exogenous heparin often complicates overall anticoagulation management, increasing bleeding tendency. Recent clinical studies suggest sodium bicarbonate (bicarb) may be an effective alternative to heparin for local anti-thrombosis. We examined the effect of sodium bicarbonate on human platelet morphology and function to better understand its translational utility. Human platelets were incubated (60:40) with D5W + 25 mEq/L, 50 mEq/L, or 100 mEq/L sodium bicarbonate versus D5W or D5W + Heparin 50 U/mL as controls. pH of platelet-bicarbonate solutions mixtures was measured. Platelet morphology was examined via transmission electron microscopy; activation assessed via P-selectin expression, phosphatidylserine exposure and thrombin generation; and aggregation with TRAP-6, calcium ionophore, ADP and collagen quantified; adhesion to glass measured via fluorescence microscopy. Sodium bicarbonate did not alter platelet morphology but did significantly inhibit activation, aggregation, and adhesion. Phosphatidylserine exposure and thrombin generation were both reduced in a concentration-dependent manner-between 26.6 ± 8.2% (p = 0.01) and 70.7 ± 5.6% (p < 0.0001); and 14.0 ± 6.2% (p = 0.15) and 41.7 ± 6.8% (p = 0.03), respectively, compared to D5W control. Platelet aggregation via all agonists was also reduced, particularly at higher concentrations of bicarb. Platelet adhesion to glass was similarly reduced, between 0.04 ± 0.03% (p = 0.61) and 0.11 ± 0.04% (p = 0.05). Sodium bicarbonate has direct, local, dose-dependent effects limiting platelet activation and adhesion. Our results highlight the potential utility of sodium bicarbonate as a locally acting agent to limit device thrombosis.


Subject(s)
Sodium Bicarbonate , Thrombosis , Humans , Sodium Bicarbonate/pharmacology , Sodium Bicarbonate/metabolism , Thrombin/metabolism , Phosphatidylserines/metabolism , Platelet Activation , Platelet Aggregation , Blood Platelets , Heparin/pharmacology , Thrombosis/drug therapy , Thrombosis/prevention & control
4.
J Am Chem Soc ; 145(28): 15197-15206, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37410992

ABSTRACT

Cancer cells generally present a higher demand for iron, which plays crucial roles in tumor progression and metastasis. This iron addiction provides opportunities to develop broad spectrum anticancer drugs that target iron metabolism. In this context, prochelation approaches are investigated to release metal-binding compounds under specific conditions, thereby limiting off-target toxicity. Here, we demonstrate a prochelation strategy inspired by the bioreduction of tetrazolium cations widely employed to assess the viability of mammalian cells. We designed a series of tetrazolium-based compounds for the intracellular release of metal-binding formazan ligands. The combination of reduction potentials appropriate for intracellular reduction and an N-pyridyl donor on the formazan scaffold led to two effective prochelators. The reduced formazans bind as tridentate ligands and stabilize low-spin Fe(II) centers in complexes of 2:1 ligand-to-metal stoichiometry. The tetrazolium salts are stable in blood serum for over 24 h, and antiproliferative activities at micromolar levels were recorded in a panel of cancer cell lines. Additional assays confirmed the intracellular activation of the prochelators and their ability to affect cell cycle progression, induce apoptotic death, and interfere with iron availability. Demonstrating the role of iron in their intracellular effects, the prochelators impacted the expression levels of key iron regulators (i.e., transferrin receptor 1 and ferritin), and iron supplementation mitigated their cytotoxicity. Overall, this work introduces the tetrazolium core as a platform to build prochelators that can be tuned for activation in the reducing environment of cancer cells and produce antiproliferative formazan chelators that interfere with cellular iron homeostasis.


Subject(s)
Iron Chelating Agents , Iron , Animals , Formazans , Iron Chelating Agents/chemistry , Iron Chelating Agents/pharmacology , Ligands , Iron/chemistry , Tetrazolium Salts , Mammals/metabolism
5.
Curr Opin Chem Biol ; 74: 102315, 2023 06.
Article in English | MEDLINE | ID: mdl-37187095

ABSTRACT

An altered metabolism of iron fuels cancer growth, invasion, metastasis, and recurrence. Ongoing research in cancer biology is delineating a complex iron-trafficking program involving both malignant cells and their support network of cancer stem cells, immune cells, and other stromal components in the tumor microenvironment. Iron-binding strategies in anticancer drug discovery are being pursued in clinical trials and in multiple programs at various levels of development. Polypharmacological mechanisms of action, combined with emerging iron-associated biomarkers and companion diagnostics, are poised to offer new therapeutic options. By targeting a fundamental player in cancer progression, iron-binding drug candidates (either alone or in combination therapy) have the potential to impact a broad range of cancer types and to address the major clinical problems of recurrence and resistance to therapy.


Subject(s)
Iron , Neoplasms , Humans , Iron/metabolism , Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Tumor Microenvironment
6.
Dalton Trans ; 52(19): 6559-6568, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37185585

ABSTRACT

The tripyrrin-1,14-dione biopyrrin, which shares the scaffold of several naturally occurring heme metabolites, is a redox-active platform for metal coordination. We report the synthesis of square planar platinum(II) tripyrrindiones, in which the biopyrrin binds as a tridentate radical and the fourth coordination position is occupied by either aqua or tert-butyl isocyanide ligands. These complexes are stable through chromatographic purification and exposure to air. Electron paramagnetic resonance (EPR) data and density functional theory (DFT) analysis confirm that the spin density is located predominantly on the tripyrrindione ligand. Pancake bonding in solution between the Pt(II) tripyrrindione radicals leads to the formation of diamagnetic π dimers at low temperatures. The identity of the monodentate ligand (i.e., aqua vs. isocyanide) affects both the thermodynamic parameters of dimerization and the tripyrrindione-based redox processes in these complexes. Isolation and structural characterization of the oxidized complexes revealed stacking of the diamagnetic tripyrrindiones in the solid state as well as a metallophilic Pt(II)-Pt(II) contact in the case of the aqua complex. Overall, the properties of Pt(II) tripyrrindiones, including redox potentials and intermolecular interactions in solution and in the solid state, are modulated through easily accessible changes in the redox state of the biopyrrin ligand or the nature of the monodentate ligand.

7.
Inorg Chem ; 61(49): 19974-19982, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36455205

ABSTRACT

Tridentate thiosemicarbazones, among several families of iron chelators, have shown promising results in anticancer drug discovery because they target the increased need for iron that characterizes malignant cells. Prochelation strategies, in which the chelator is released under specific conditions, have the potential to avoid off-target metal binding (for instance, in the bloodstream) and minimize unwanted side effects. We report a prochelation approach that employs arylsulfonate esters to mask the phenolate donor of salicylaldehyde-based chelators. The new prochelators liberate a tridentate thiosemicarbazone intracellularly upon reaction with abundant nucleophile glutathione (GSH). A 5-bromo-substituted salicylaldehyde thiosemicarbazone (STC4) was selected for the chelator unit because of its antiproliferative activity at low micromolar levels in a panel of six cancer cell lines. The arylsulfonate prochelators were assessed in vitro with respect to their stability, ability to abolish metal binding, and reactivity in the presence of GSH. Cell-based assays indicated that the arylsulfonate-masked prochelators present higher antiproliferative activities relative to the parent compound after 24 h. The activation and release of the chelator intracellularly were corroborated by assays of cytosolic iron binding and iron supplementation effects as well as cell cycle analysis. This study introduces the 1,3,4-thiadiazole sulfonate moiety to mask the phenolate donor of an iron chelator and impart good solubility and stability to prochelator constructs. The reactivity of these systems can be tuned to release the chelator at high glutathione levels, as encountered in several cancer phenotypes.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Iron/chemistry , Sulfhydryl Compounds/pharmacology , Iron Chelating Agents/pharmacology , Iron Chelating Agents/chemistry , Thiosemicarbazones/chemistry , Glutathione/metabolism , Cell Line , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
8.
ACS Med Chem Lett ; 13(9): 1452-1458, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36105345

ABSTRACT

Glycoconjugation strategies in anticancer drug discovery exploit the high expression of glucose transporters in malignant cells to achieve preferential uptake and hence attractive pharmacological characteristics of increased therapeutic windows and decreased unwanted toxicity. Here we present the design of glycoconjugated prochelators of aroylhydrazone AH1, an antiproliferative scavenger that targets the increased iron demand of rapidly proliferating malignant cells. The constructs feature a monosaccharide (d-glucose, d-glucosamine, or glycolytic inhibitor 2-deoxy-d-glucose) connected at the C2 or C6 position via a short linker, which masks the chelator through a disulfide bond susceptible to intracellular reduction. Cellular assays showed that the glycoconjugates rely on the GLUT1 transporter for uptake, lead to intracellular iron deprivation, and present antiproliferative activity. Ectopic overexpression of GLUT1 in malignant and normal cells increased the uptake and toxicity of the glycoconjugated prochelators, demonstrating that these compounds are well suited for targeting cells overexpressing glucose transporters and therefore for selective iron sequestration in malignant cells.

9.
Phys Chem Chem Phys ; 24(26): 15718-15725, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35730195

ABSTRACT

Stable open- and closed-shell Pd(II) and Cu(II) complexes of hexaethyl tripyrrin-1,14-dione (TD1) produce triplet, doublet or singlet states depending on the metal center and the redox state of the ligand. Pd(II) and Cu(II) form neutral TD1 complexes featuring ligand-based radicals, thus resulting in doublet and triplet states, respectively. The reversible one-electron oxidation of the complexes removes an unpaired electron from the ligand, generating singlet and doublet states. The optical properties and time-resolved dynamics of these systems are studied here using steady-state and ultrafast transient absorption (pump-probe) measurements. Fast relaxation with recovery of the ground state in tens of picoseconds is observed for the copper neutral radical and oxidized complexes as well as for the palladium neutral radical complex. Significantly longer timescales are observed for the oxidized palladium complex. The ability to tune the overall spin state of the complexes through their stable open-shell configurations as well as the reversible redox activity of the tripyrrolic systems makes them particularly interesting for catalytic applications as well as exploring magnetism and conductivity properties.

10.
Acc Chem Res ; 54(24): 4584-4594, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34870973

ABSTRACT

Redox-active ligands in coordination chemistry not only modulate the reactivity of the bound metal center but also serve as electron reservoirs to store redox equivalents. Among many applications in contemporary chemistry, the scope of redox-active ligands in biology is exemplified by the porphyrin radicals in the catalytic cycles of multiple heme enzymes (e.g., cytochrome P450, catalase) and the chlorophyll radicals in photosynthetic systems. This Account reviews the discovery of two redox-active ligands inspired by oligopyrrolic fragments found in biological settings as products of heme metabolism.Linear oligopyrroles, in which pyrrole heterocycles are linked by methylene or methine bridges, are ubiquitous in nature as part of the complex, multistep biosynthesis and degradation of hemes and chlorophylls. Bile pigments, such as biliverdin and bilirubin, are common and well-studied tetrapyrroles with characteristic pyrrolin-2-one rings at both terminal positions. The coordination chemistry of these open-chain pigments is less developed than that of porphyrins and other macrocyclic oligopyrroles; nevertheless, complexes of biliverdin and its synthetic analogs have been reported, along with fluorescent zinc complexes of phytobilins employed as bioanalytical tools. Notably, linear conjugated tetrapyrroles inherit from porphyrins the ability to stabilize unpaired electrons within their π system. The isolated complexes, however, present helical structures and generally limited stability.Smaller biopyrrins, which feature three or two pyrrole rings and the characteristic oxidized termini, have been known for several decades following their initial isolation as urinary pigments and heme metabolites. Although their coordination chemistry has remained largely unexplored, these compounds are structurally similar to the well-established tripyrrin and dipyrrin ligands employed in a broad variety of metal complexes. In this context, our study of the coordination chemistry of tripyrrin-1,14-dione and dipyrrin-1,9-dione was motivated by the potential to retain on these compact, versatile platforms the reversible ligand-based redox chemistry of larger tetrapyrrolic systems.The tripyrrindione ligand coordinates several divalent transition metals (i.e., Pd(II), Ni(II) Cu(II), Zn(II)) to form neutral complexes in which an unpaired electron is delocalized over the conjugated π system. These compounds, which are stable at room temperature and exposed to air, undergo reversible one-electron processes to access different redox states of the ligand system without affecting the oxidation state and coordination geometry of the metal center. We also characterized ligand-based radicals on the dipyrrindione platform in both homoleptic and heteroleptic complexes. In addition, this study documented noncovalent interactions (e.g., interligand hydrogen bonds with the pyrrolinone carbonyls, π-stacking of ligand-centered radicals) as important aspects of this coordination chemistry. Furthermore, the fluorescence of the zinc-bound tripyrrindione radical and the redox-switchable emission of a dipyrrindione BODIPY-type fluorophore showcased the potential interplay of redox chemistry and luminescence in these compounds. Supported by computational analyses, the portfolio of properties revealed by this investigation takes the tripyrrindione and dipyrrindione motifs of heme metabolites to the field of redox-active ligands, where they are positioned to offer new opportunities for catalysis, sensing, supramolecular systems, and functional materials.


Subject(s)
Coordination Complexes , Heme , Ligands , Luminescence , Oxidation-Reduction
11.
Inorg Chem ; 60(16): 12457-12466, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34347474

ABSTRACT

Oligopyrroles form a versatile class of redox-active ligands and electron reservoirs. Although the stabilization of radicals within oligopyrrolic π systems is more common for macrocyclic ligands, bidentate dipyrrindiones are emerging as compact platforms for one-electron redox chemistry in transition-metal complexes. We report the synthesis of a bis(aqua) palladium(II) dipyrrindione complex and its deprotonation-driven dimerization to form a hydroxo-bridged binuclear complex in the presence of water or triethylamine. Electrochemical, spectroelectrochemical, and computational analyses of the binuclear complex indicate the accessibility of two quasi-reversible ligand-centered reduction processes. The product of a two-electron chemical reduction by cobaltocene was isolated and characterized. In the solid state, this cobaltocenium salt features a folded dianionic complex that maintains the hydroxo bridges between the divalent palladium centers. X-band and Q-band EPR spectroscopic experiments and DFT computational analysis allow assignment of the dianionic species as a diradical with spin density almost entirely located on the two dipyrrindione ligands. As established from the EPR temperature dependence, the associated exchange coupling is weak and antiferromagnetic (J ≈ -2.5 K), which results in a predominantly triplet state at the temperatures at which the measurements have been performed.

12.
JACS Au ; 1(6): 865-878, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34240081

ABSTRACT

Efforts directed at curtailing the bioavailability of intracellular iron could lead to the development of broad-spectrum anticancer drugs given the metal's role in cancer proliferation and metastasis. Human ribonucleotide reductase (RNR), the key enzyme responsible for synthesizing the building blocks of DNA replication and repair, depends on Fe binding at its R2 subunit to activate the catalytic R1 subunit. This work explores an intracellular iron chelator transmetalative approach to inhibit RNR using the titanium(IV) chemical transferrin mimetic (cTfm) compounds Ti(HBED) and Ti(Deferasirox)2. Whole-cell EPR studies reveal that the compounds can effectively attenuate RNR activity though seemingly causing different changes to the labile iron pool that may account for differences in their potency against cells. Studies of Ti(IV) interactions with the adenosine nucleotide family at pH 7.4 reveal strong metal binding and extensive phosphate hydrolysis, which suggest the capacity of the metal to disturb the nucleotide substrate pool of the RNR enzyme. By decreasing intracellular Fe bioavailability and altering the nucleotide substrate pool, the Ti cTfm compounds could inhibit the activity of the R1 and R2 subunits of RNR. The compounds arrest the cell cycle in the S phase, indicating suppressed DNA replication, and induce apoptotic cell death. Cotreatment cell viability studies with cisplatin and Ti(Deferasirox)2 reveal a promising synergism between the compounds that is likely owed to their distinct but complementary effect on DNA replication.

13.
ChemMedChem ; 16(18): 2764-2768, 2021 09 16.
Article in English | MEDLINE | ID: mdl-33974730

ABSTRACT

The central role of iron in tumor progression and metastasis motivates the development of iron-binding approaches in cancer chemotherapy. Disulfide-based prochelators are reductively activated upon cellular uptake to liberate thiol chelators responsible for iron sequestration. Herein, a trimethyl thiosemicarbazone moiety and the imidazole-2-thione heterocycle are incorporated in this prochelator design. Iron binding of the corresponding tridentate chelators leads to the stabilization of a low-spin ferric center in 2 : 1 ligand-to-metal complexes. Native mass spectrometry experiments show that the prochelators form stable disulfide conjugates with bovine serum albumin, thus affording novel bioconjugate prochelator systems. Antiproliferative activities at sub-micromolar levels are recorded in a panel of breast, ovarian and colorectal cancer cells, along with significantly lower activity in normal fibroblasts.


Subject(s)
Antineoplastic Agents/pharmacology , Imidazoles/pharmacology , Iron/pharmacology , Thiones/pharmacology , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemistry , Iron/chemistry , Ligands , Molecular Structure , Structure-Activity Relationship , Thiones/chemistry , Thiosemicarbazones/chemistry
14.
Inorg Chem ; 59(16): 11377-11384, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32799490

ABSTRACT

Tridentate aroyl hydrazones are effective metal chelators in biological settings, and their activity has been investigated extensively for medicinal applications in metal overload, cancer, and neurodegenerative diseases. The aroyl hydrazone motif is found in the recently reported prochelator (AH1-S)2, which has shown antiproliferative proapoptotic activity in mammalian cancer cell lines. Intracellular reduction of this disulfide prochelator leads to the formation of mercaptobenzaldehyde benzoylhydrazone chelator AH1 and to iron sequestration, which in turn impacts cell growth. Herein, we investigate the iron coordination chemistry of AH1 to determine the structural and spectroscopic properties of the iron complexes in the solid state and in solution. A neutral iron(III) complex of 2:1 ligand-to-metal stoichiometry was isolated and characterized fully to reveal two different binding modes for the tridentate AH1 ligand. Specifically, one ligand binds in the monoanionic keto form, whereas the other ligand coordinates as a dianionic enolate. Continuous-wave electron paramagnetic resonance experiments in frozen solutions indicated that this neutral complex is one of three low-spin iron(III) complexes observed depending on the pH of the solution. Electron spin echo envelope modulation (ESEEM) experiments allowed assignment of the three species to different protonation states of the coordinated ligands. Our ESEEM analysis provides a method to distinguish the coordination of aroyl hydrazones in the keto and enolate forms, which influences both the ligand field and overall charge of the complex. As such, this type of analysis could provide valuable information in a variety of studies of iron complexes of aroyl hydrazones, ranging from the investigation of spin-crossover behavior to tracking of their distribution in biological samples.


Subject(s)
Cell Proliferation/drug effects , Electron Spin Resonance Spectroscopy/methods , Hydrazones/chemistry , Hydrazones/pharmacology , Iron/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Female , Humans , Molecular Structure , Protons
15.
Cancers (Basel) ; 12(3)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106629

ABSTRACT

Accumulating evidence suggests that iron homeostasis is disturbed in tumors. We aimed at clarifying the distribution of iron in renal cell carcinoma (RCC). Considering the pivotal role of macrophages for iron homeostasis and their association with poor clinical outcome, we investigated the role of macrophage-secreted iron for tumor progression by applying a novel chelation approach. We applied flow cytometry and multiplex-immunohistochemistry to detect iron-dependent markers and analyzed iron distribution with atomic absorption spectrometry in patients diagnosed with RCC. We further analyzed the functional significance of iron by applying a novel extracellular chelator using RCC cell lines as well as patient-derived primary cells. The expression of iron-regulated genes was significantly elevated in tumors compared to adjacent healthy tissue. Iron retention was detected in tumor cells, whereas tumor-associated macrophages showed an iron-release phenotype accompanied by enhanced expression of ferroportin. We found increased iron amounts in extracellular fluids, which in turn stimulated tumor cell proliferation and migration. In vitro, macrophage-derived iron showed pro-tumor functions, whereas application of an extracellular chelator blocked these effects. Our study provides new insights in iron distribution and iron-handling in RCC. Chelators that specifically scavenge iron in the extracellular space confirmed the importance of macrophage-secreted iron in promoting tumor growth.

16.
J Phys Chem B ; 123(26): 5524-5535, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31177778

ABSTRACT

The optical properties and ultrafast dynamics of hexaethyl tripyrrin-1,14-dione (H3TD1) are tuned by hydrogen-bonding interactions between the solute and the solvent. In solvents with low hydrogen-bonding affinity, H3TD1 preferentially forms hydrogen-bonded dimers, whereas in solvents that can either donate or accept hydrogen bonds H3TD1 is present as a monomer. The distinction between dimer and monomer determines the dynamics of the system, with faster internal conversion observed in the dimer form. The ultrafast dynamics were characterized using time-correlated single photon counting, fluorescence upconversion, and transient absorption measurements. The time-resolved dynamics of both the monomer and dimer in solution were modeled using a Pauli master equation treatment for a three level system. The solvent-dependent optical properties were measured using steady-state absorption and fluorescence. This data was then used to calculate the quantum yield and extinction coefficients.

17.
Int J Mol Sci ; 20(2)2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30641920

ABSTRACT

Iron is an essential element for virtually all organisms. On the one hand, it facilitates cell proliferation and growth. On the other hand, iron may be detrimental due to its redox abilities, thereby contributing to free radical formation, which in turn may provoke oxidative stress and DNA damage. Iron also plays a crucial role in tumor progression and metastasis due to its major function in tumor cell survival and reprogramming of the tumor microenvironment. Therefore, pathways of iron acquisition, export, and storage are often perturbed in cancers, suggesting that targeting iron metabolic pathways might represent opportunities towards innovative approaches in cancer treatment. Recent evidence points to a crucial role of tumor-associated macrophages (TAMs) as a source of iron within the tumor microenvironment, implying that specifically targeting the TAM iron pool might add to the efficacy of tumor therapy. Here, we provide a brief summary of tumor cell iron metabolism and updated molecular mechanisms that regulate cellular and systemic iron homeostasis with regard to the development of cancer. Since iron adds to shaping major hallmarks of cancer, we emphasize innovative therapeutic strategies to address the iron pool of tumor cells or cells of the tumor microenvironment for the treatment of cancer.


Subject(s)
Iron/metabolism , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , DNA Damage , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Metabolic Networks and Pathways/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Oxidative Stress , Tumor Microenvironment
18.
Inorg Chem ; 57(24): 15240-15246, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30418755

ABSTRACT

The ability of bilins and other biopyrrins to form fluorescent zinc complexes has been known for more than a century; however, the exact identity of the emissive species remains uncertain in many cases. Herein, we characterize the hitherto elusive zinc complex of tripyrrin-1,14-dione, an analogue of several orange urinary pigments. As previously observed for its Pd(II), Cu(II), and Ni(II) complexes, tripyrrindione binds Zn(II) as a dianionic radical and forms a paramagnetic complex carrying an unpaired electron on the ligand π-system. This species is stable at room temperature and undergoes quasi-reversible ligand-based redox chemistry. Although the complex is isolated as a coordination dimer in the solid state, optical absorption and electron paramagnetic resonance spectroscopic studies indicate that the monomer is prevalent in a tetrahydrofuran solution. The paramagnetic Zn(II) tripyrrindione complex is brightly fluorescent (λabs = 599 nm, λem = 644 nm, ΦF = 0.23 in THF), and its study provides a molecular basis for the observation, made over several decades since the 1930s, of fluorescent behavior of tripyrrindione pigments in the presence of zinc salts. The zinc-bound tripyrrindione radical is thus a new addition to the limited number of stable radicals that are fluorescent at room temperature.


Subject(s)
Coordination Complexes/chemistry , Dipyrone/chemistry , Fluorescence , Pyridones/chemistry , Zinc/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Free Radicals/chemistry , Ligands , Models, Molecular , Molecular Structure , Oxidation-Reduction
19.
Chembiochem ; 19(5): 496-504, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29235227

ABSTRACT

Histone deacetylases regulate the acetylation levels of numerous proteins and play key roles in physiological processes and disease states. In addition to acetyl groups, deacetylases can remove other acyl modifications on lysines, the roles and regulation of which are far less understood. A peptide-based fluorescent probe for single-reagent, real-time detection of deacetylase activity that can be readily adapted for probing broader lysine deacylation, including decrotonylation, is reported. Following cleavage of the lysine modification, the probe undergoes rapid intramolecular imine formation that results in marked optical changes, thus enabling convenient detection of deacylase activity with good statistical Z' factors for both absorption and fluorescence modalities. The peptide-based design offers broader isozyme scope than that of small-molecule analogues, and is suitable for probing both metal- and nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases. With an effective sirtuin activity assay in hand, it is demonstrated that iron chelation by Sirtinol, a commonly employed sirtuin inhibitor, results in an enhancement in the inhibitory activity of the compound that may affect its performance in vivo.


Subject(s)
Enzyme Assays/methods , Fluorescent Dyes/metabolism , Histone Deacetylases/metabolism , Lysine/metabolism , Peptides/metabolism , Spectrometry, Fluorescence/methods , Acylation/drug effects , Benzamides/pharmacology , Fluorescent Dyes/chemistry , Histone Deacetylases/chemistry , Humans , Lysine/analysis , NAD/metabolism , Naphthols/pharmacology , Peptides/chemistry , Sirtuins/antagonists & inhibitors , Sirtuins/chemistry , Sirtuins/metabolism
20.
Inorg Chem ; 56(11): 6755-6762, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28497967

ABSTRACT

The ability of tetrapyrrolic macrocycles to stabilize unpaired electrons and engage in π-π interactions is essential for many electron-transfer processes in biology and materials engineering. Herein, we demonstrate that the formation of π dimers is recapitulated in complexes of a linear tripyrrolic analogue of naturally occurring pigments derived from heme decomposition. Hexaethyltripyrrindione (H3TD1) coordinates divalent transition metals (i.e., Pd, Cu, Ni) as a stable dianionic radical and was recently described as a robust redox-active ligand. The resulting planar complexes, which feature a delocalized ligand-based electronic spin, are stable at room temperature in air and support ligand-based one-electron processes. We detail the dimerization of neutral tripyrrindione complexes in solution through electron paramagnetic resonance (EPR) and visible absorption spectroscopic methods. Variable-temperature measurements using both EPR and absorption techniques allowed determination of the thermodynamic parameters of π dimerization, which resemble those previously reported for porphyrin radical cations. The inferred electronic structure, featuring coupling of ligand-based electronic spins in the π dimers, is supported by density functional theory (DFT) calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...