Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 12(2): 339-50, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11179419

ABSTRACT

Syntenin is a PDZ protein that binds the cytoplasmic C-terminal FYA motif of the syndecans. Syntenin is widely expressed. In cell fractionation experiments, syntenin partitions between the cytosol and microsomes. Immunofluorescence microscopy localizes endogenous and epitope-tagged syntenin to cell adhesion sites, microfilaments, and the nucleus. Syntenin is composed of at least three domains. Both PDZ domains of syntenin are necessary to target reporter tags to the plasma membrane. The addition of a segment of 10 amino acids from the N-terminal domain of syntenin to these PDZ domains increases the localization of the tags to stress fibers and induces the formation of long, branching plasma membrane extensions. The addition of the complete N-terminal region, in contrast, reduces the localization of the tags to plasma membrane/adhesion sites and stress fibers, and reduces the morphotypical effects. Recombinant domains of syntenin with the highest plasma membrane localization display the lowest nuclear localization. Syndecan-1, E-cadherin, beta-catenin, and alpha-catenin colocalize with syntenin at cell-cell contacts in epithelial cells, and coimmunoprecipitate with syntenin from extracts of these cells. These results suggest a role for syntenin in the composition of adherens junctions and the regulation of plasma membrane dynamics, and imply a potential role for syntenin in nuclear processes.


Subject(s)
Actin Cytoskeleton/metabolism , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/metabolism , Membrane Proteins , Proteoglycans/metabolism , Amino Acid Sequence , Animals , Cadherins/metabolism , Carrier Proteins/genetics , Cell Adhesion/physiology , Cell Communication , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cells, Cultured , Conserved Sequence , Cytosol/metabolism , Epithelial Cells/metabolism , Humans , Mammals , Mice , Mice, Inbred BALB C , Microsomes/metabolism , Molecular Sequence Data , Mutation , Rabbits , Sequence Homology, Amino Acid , Syndecan-1 , Syndecans , Syntenins
2.
Exp Cell Res ; 246(2): 421-32, 1999 Feb 01.
Article in English | MEDLINE | ID: mdl-9925758

ABSTRACT

alpha7 beta1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the alpha7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with alpha7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the alpha7 beta1. alpha7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of alpha7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the alpha5 beta1 fibronectin receptor. Although cell surface expression of alpha5 beta1 was reduced by a factor of 20-25% in alpha7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of 125I-fibronectin for its surface receptor was decreased by 50% in alpha7 transfectants, indicating that the alpha5 beta1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+ restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in alpha7 transfectants. These data indicate that alpha7 expression leads to the functional down regulation of alpha5beta1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of a negative cooperativity between alpha7 and alpha5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.


Subject(s)
Integrins/metabolism , Muscles/metabolism , Receptors, Fibronectin/metabolism , Receptors, Laminin/metabolism , Receptors, Vitronectin , Amino Acid Sequence , Animals , CHO Cells , Cell Adhesion , Cell Differentiation , Cell Line , Cricetinae , Gene Expression , Integrins/genetics , Manganese , Models, Biological , Molecular Sequence Data , Muscles/cytology , Rabbits , Receptors, Laminin/genetics , Transfection
3.
Cell Adhes Commun ; 5(3): 193-205, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9686317

ABSTRACT

beta 1D is a recently identified isoform of the beta 1 integrin subunit selectively expressed in skeletal and cardiac muscles. In the present study we determined the temporal expression of beta 1D and its association with alpha subunits during mouse development. By immunohistochemistry and western blot analysis we demonstrated that beta 1D begins to be expressed in skeletal muscles of 17 days embryo (stage E17). Its level progressively increases reaching maximal values few days after birth and remaining high in adult mice. At earlier stages of development (E11-E17) the beta 1A isoform is expressed in skeletal muscle cells. After E17 beta 1A is downregulated and disappears from muscle fibers few days after birth. In cardiac muscle the regulation of the beta 1D expression is different: beta 1D and beta 1A are coexpressed in the heart of E11 embryo. Subsequently expression of beta 1A declines, while beta 1D increases until it becomes the unique beta 1 isoform in cardiomyocytes few days after birth. Previous studies (Belkin et al J. Cell Biol. 132: 211-226, 1996) demonstrated that beta 1D in adult mouse cardiomyocytes is exclusively associated with alpha 7B. Western blot analysis shows that alpha 7B starts to be expressed in the heart only at stage E17, while beta 1D is expressed already at E11 embryo, indicating that alpha subunits other than alpha 7 should associate with beta 1D in early developmental stages. To investigate this aspect, beta 1 associated alpha subunits were identified by western blotting from cardiomyocytes integrin complexes immunoprecipitated with alpha subunit specific antibodies. We found that, during cardiomyocyte development, beta 1D associates with several alpha subunits namely with alpha 5, alpha 6A and alpha 7B. In conclusion these data show that the expression of the beta 1D muscle specific integrin during development occurs much earlier in heart than in skeletal muscle and it can dimerize with different alpha subunits.


Subject(s)
Antigens, CD/genetics , Heart/embryology , Integrin alpha Chains , Integrin beta1/genetics , Muscle, Skeletal/embryology , Alternative Splicing/physiology , Amino Acid Sequence , Animals , Antigens, CD/analysis , Antigens, CD/immunology , Dimerization , Gene Expression Regulation, Developmental/physiology , Immunization , Integrin beta1/analysis , Integrin beta1/immunology , Integrins/analysis , Integrins/genetics , Integrins/immunology , Mice , Molecular Sequence Data , Muscle, Skeletal/chemistry , Myocardium/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology
4.
J Cell Sci ; 111 ( Pt 6): 691-700, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9471998

ABSTRACT

Myogenic regulatory factors (MRF) of the MyoD family regulate the skeletal muscle differentiation program. Non-muscle cells transfected with exogenous MRF either are converted to the myogenic lineage or fail to express the muscle phenotype, depending on the cell type analysed. We report here that MRF-induced myogenic conversion of NIH3T3 cells results in an incomplete reprogramming of these cells. Transfected cells withdrew from the cell cycle and underwent biochemical differentiation but, surprisingly, terminally differentiated myocytes absolutely failed to fuse into multinucleated myotubes. Analysis of muscle regulatory and structural gene expression failed to provide an explanation for the fusion defectiveness. However, myogenic derivatives of NIH3T3 cells were shown to be unable to accumulate the transcripts encoding muscle-specific isoforms of the integrin subunit beta1D and the transcription factor MEF2D1b2, that depend on muscle-specific alternative splicing. Our results suggest that the fusion into myotubes is under a distinct genetic control that might depend, at least partially, on differential splicing.


Subject(s)
Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , MyoD Protein/physiology , 3T3 Cells , Alternative Splicing/genetics , Animals , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Cell Differentiation/physiology , Cell Fusion , Gene Expression Regulation , Mice , Muscle Fibers, Skeletal/metabolism , Myogenic Regulatory Factors/physiology , Organ Specificity/genetics , Phenotype
5.
J Cell Biol ; 132(1-2): 211-26, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8567725

ABSTRACT

The cytoplasmic domains of integrins provide attachment of these extracellular matrix receptors to the cytoskeleton and play a critical role in integrin-mediated signal transduction. In this report we describe the identification, expression, localization, and initial functional characterization of a novel form of beta 1 integrin, termed beta 1D. This isoform contains a unique alternatively spliced cytoplasmic domain of 50 amino acids, with the last 24 amino acids encoded by an additional exon. Of these 24 amino acids, 11 are conserved when compared to the beta 1A isoform, but 13 are unique (Zhidkova, N. I., A. M. Belkin, and R. Mayne. 1995. Biochem. Biophys. Res. Commun. 214:279-285; van der Flier, A., I. Kuikman, C. Baudoin, R, van der Neuf, and A. Sonnenberg. 1995. FEBS Lett. 369:340-344). Using an anti-peptide antibody against the beta 1D integrin subunit, we demonstrated that the beta 1D isoform is synthesized only in skeletal and cardiac muscles, while very low amounts of beta 1A were detected by immunoblot in striated muscles. Whereas beta 1A could not be detected in adult skeletal muscle fibers and cardiomyocytes by immunofluorescence, beta 1D was localized to the sarcolemma of both cell types. In skeletal muscle, beta 1D was concentrated in costameres, myotendinous, and neuromuscular junctions. In cardiac muscle this beta 1 isoform was found in costamers and intercalated discs. beta 1D was associated with alpha 7A and alpha 7B in adult skeletal muscle. In cardiomyocytes of adult heart, alpha 7B was the major partner for the beta 1D isoform. beta 1D could not be detected in proliferating C2C12 myoblasts, but it appeared immediately after myoblast fusion and its amount continued to rise during myotube growth and maturation. In contrast, expression of the beta 1A isoform was downregulated during myodifferentiation in culture and it was completely displaced by beta 1D in mature differentiated myotubes. We also analyzed some functional properties of the beta 1D integrin subunit. Expression of human beta 1D in CHO cells led to its localization at focal adhesions. Clustering of this integrin isoform on the cell surface stimulated tyrosine phosphorylation of pp125FAK (focal adhesion kinase) and caused transient activation of mitogen-activated protein (MAP) kinases. These data indicate that beta 1D and beta 1A integrin isoforms are functionally similar with regard to integrin-mediated signaling.


Subject(s)
Genetic Variation , Integrin beta1/physiology , Intercellular Junctions/chemistry , Muscle, Skeletal/physiology , Signal Transduction/physiology , Amino Acid Sequence , Animals , Base Sequence , CHO Cells , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Adhesion , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cricetinae , Enzyme Activation , Fluorescent Antibody Technique , Focal Adhesion Kinase 1 , Focal Adhesion Protein-Tyrosine Kinases , Integrin beta1/genetics , Integrin beta1/isolation & purification , Mice , Molecular Sequence Data , Muscle, Skeletal/cytology , Myocardium/chemistry , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...