Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Plant Dis ; 107(9): 2778-2783, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36774560

ABSTRACT

Abscisic acid (ABA) is a classical hormone involved in the plant defense against abiotic stresses, especially drought. However, its role in the defense response against biotic stresses is controversial: it can induce resistance to some pathogens but can also increase the susceptibility to other pathogens. Information regarding the effect of ABA on the relationship between plants and sedentary phytonematodes, such as Meloidogyne paranaensis, is scarce. In this study, we found that ABA changed the susceptibility level of Arabidopsis thaliana against M. paranaensis. The population of M. paranaensis was reduced by 58.3% with the exogenous application of ABA 24 h before the nematode inoculation, which demonstrated that ABA plays an important role in the preinfectional defense of A. thaliana against M. paranaensis. The increase in the nematode population density in the ABA biosynthesis mutant, aba2-1, corroborated the results observed with the exogenous application of ABA. The phytohormone did not show nematicide or nematostatic effects on M. paranaensis juveniles in in vitro tests, indicating that the response is linked to intrinsic plant factors, which was corroborated by the decrease in the number of nematodes in the abi4-1 mutant. This reduction indicates that the gene expression regulation by transcript factors is possibly related to regulatory cascades mediated by ABA in the response of A. thaliana against M. paranaensis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Tylenchoidea , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/pharmacology , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism
2.
Sci Rep ; 12(1): 2794, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181693

ABSTRACT

Type II toxin-antitoxin (TA) systems are widespread in bacteria and are involved in important cell features, such as cell growth inhibition and antimicrobial tolerance, through the induction of persister cells. Overall, these characteristics are associated with bacterial survival under stress conditions and represent a significant genetic mechanism to be explored for antibacterial molecules. We verified that even though Xylella fastidiosa and Xanthomonas citri subsp. citri share closely related genomes, they have different Type II TA system contents. One important difference is the absence of mqsRA in X. citri. The toxin component of this TA system has been shown to inhibit the growth of X. fastidiosa. Thus, the absence of mqsRA in X. citri led us to explore the possibility of using the MqsR toxin to impair X. citri growth. We purified MqsR and confirmed that the toxin was able to inhibit X. citri. Subsequently, transgenic citrus plants producing MqsR showed a significant reduction in citrus canker and citrus variegated chlorosis symptoms caused, respectively, by X. citri and X. fastidiosa. This study demonstrates that the use of toxins from TA systems is a promising strategy to be explored aiming bacterial control.


Subject(s)
Bacterial Toxins/genetics , Citrus/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/pharmacology , Biotechnology , Citrus/genetics , Escherichia coli Proteins/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/microbiology , Plants, Genetically Modified/genetics , Virulence/genetics , Xanthomonas/genetics , Xanthomonas/pathogenicity , Xylella/genetics , Xylella/pathogenicity
3.
Plant Physiol ; 157(2): 692-705, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21844310

ABSTRACT

Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5'-untranslated region::ß-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Glucose/metabolism , 5' Untranslated Regions , Abscisic Acid/biosynthesis , Biosynthetic Pathways , Gene Expression Regulation, Plant , Glucuronidase/genetics , Glucuronidase/metabolism , Hexokinase/metabolism , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/metabolism , RNA Stability , Signal Transduction , Trans-Activators/metabolism
4.
Rev. bras. hematol. hemoter ; 33(3): 211-215, June 2011. ilus, tab
Article in English | LILACS | ID: lil-596324

ABSTRACT

BACKGROUND: Real time PCR has become the most common technique to monitor BCR-ABL transcript levels of patients treated with kinase inhibitors. The aim of this study was to evaluate BCR-ABL levels of chronic myeloid leukemia patients treated with imatinib in the chronic phase and correlate the response to therapy and event-free survival. METHODS: BCR-ABL levels were measured in peripheral blood cell samples using Real time PCR at diagnosis and then every 3 months after starting therapy with imatinib. Major molecular response was defined as a three-log reduction from the standardized baseline value. Major molecular response values were adjusted to international scale using a conversion factor of 1.19. The results are reported as a BCR-ABL/ABL ratio ( percent). RESULTS: Hematological, major cytogenetic and complete cytogenetic responses were achieved by 57 (95 percent), 45 (75 percent) and 38 (63 percent) patients, respectively. Twenty-four out of sixty patients achieved a major molecular response (40 percent) in a median time of 8.5 months. Overall survival and event free survival were higher for patients with (100 percent) versus patients without (77 percent) a complete cytogenetic response (p-value = 0.01) at 48 months. Patients with complete cytogenetic response and major molecular response had a higher event free survival compared to patients with complete cytogenetic response but without major molecular response (p-value = 0.007). CONCLUSION: In conclusion, the prognostic impact of achieving complete cytogenetic response and a major molecular response and also the importance of molecular monitoring in the follow-up of chronic myeloid leukemia patients were demonstrated.


Subject(s)
Humans , Protein Kinase Inhibitors/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Environmental Monitoring
5.
Rev Bras Hematol Hemoter ; 33(3): 211-5, 2011.
Article in English | MEDLINE | ID: mdl-23049298

ABSTRACT

BACKGROUND: Real time PCR has become the most common technique to monitor BCR-ABL transcript levels of patients treated with kinase inhibitors. The aim of this study was to evaluate BCR-ABL levels of chronic myeloid leukemia patients treated with imatinib in the chronic phase and correlate the response to therapy and event-free survival. METHODS: BCR-ABL levels were measured in peripheral blood cell samples using Real time PCR at diagnosis and then every 3 months after starting therapy with imatinib. Major molecular response was defined as a three-log reduction from the standardized baseline value. Major molecular response values were adjusted to international scale using a conversion factor of 1.19. The results are reported as a BCR-ABL/ABL ratio (%). RESULTS: Hematological, major cytogenetic and complete cytogenetic responses were achieved by 57 (95%), 45 (75%) and 38 (63%) patients, respectively. Twenty-four out of sixty patients achieved a major molecular response (40%) in a median time of 8.5 months. Overall survival and event free survival were higher for patients with (100%) versus patients without (77%) a complete cytogenetic response (p-value = 0.01) at 48 months. Patients with complete cytogenetic response and major molecular response had a higher event free survival compared to patients with complete cytogenetic response but without major molecular response (p-value = 0.007). CONCLUSION: In conclusion, the prognostic impact of achieving complete cytogenetic response and a major molecular response and also the importance of molecular monitoring in the follow-up of chronic myeloid leukemia patients were demonstrated.s.

6.
Genet. mol. biol ; 30(3): 594-598, 2007. ilus, tab
Article in English | LILACS | ID: lil-460077

ABSTRACT

The purpose of this research was to elucidate the genetic control of orange corona color in carioca common beans (Phaseolus vulgaris). We made four crosses between carioca group cultivars that differed in respect to the presence or absence of an orange hilum corona color. The F2, F3, F1BC11, F1BC21, F2BC11 and F2BC21 phenotypic segregations were evaluated with a chi-square test which fitted with the hypothesis that one gene with a dominant allele is responsible for the orange corona color. All generations resulting from the four different crosses showed segregation patterns which agreed with the expected proportions. Our results show that the dominant G allele controls orange corona color in the carioca bean group.

SELECTION OF CITATIONS
SEARCH DETAIL
...