Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770722

ABSTRACT

Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.


Subject(s)
Melanins , Zebrafish , Animals , Humans , Melanins/metabolism , Zebrafish/metabolism , Monophenol Monooxygenase , Skin , Molecular Structure
2.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34577555

ABSTRACT

Hancornia speciosa Gomes is a tree native to Brazil and has therapeutic potential for several diseases. Ethnopharmacological surveys have reported that the plant is used as a hypoglycemic agent and to lose weight. This study aimed to evaluate the effects of the aqueous extract from H. speciosa latex (LxHs) in a zebrafish model of diabetes. The extract was evaluated through high-performance thin-layer chromatography (HTPLC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FT-IR). We then tested treatments with LxHs (500, 1000, and 1500 mg/kg) by assessing blood glucose levels in alloxan-induced diabetic animals, and metformin was used as a control. The toxicity was evaluated through histopathology of the pancreas and biochemical assessment of serum levels of AST, ALT, creatinine, and urea. The extract was also assessed for acute toxicity through several parameters in embryos and adult animals. Finally, we performed in silico analysis through the SEA server and docking using the software GOLD. The phytochemical study showed the compounds cornoside, dihydrocornoide, and 1-O-methyl-myoinositol (bornesitol). The treatment with all doses of LxHs significantly decreased alloxan-induced hyperglycemia without any significant histological or biochemical abnormalities. No significant frequency of teratogenesis was observed in the embryos exposed to the extract, and no significant behavioral changes or deaths were observed in adult animals. In silico, the results showed a potential interaction between inositol and enzymes involved in carbohydrates' metabolism. Overall, the results show a hypoglycemic activity of the extract in vivo, with no apparent toxicity. The computational studies suggest this could be at least partially due to the presence of bornesitol, since inositols can interact with carbohydrates' enzymes.

3.
PLoS One ; 16(7): e0254225, 2021.
Article in English | MEDLINE | ID: mdl-34242328

ABSTRACT

Ayapana triplinervis is a plant species used in traditional medicine and in mystical-religious rituals by traditional communities in the Amazon. The aim of this study are to develop a nano-emulsion containing essential oil from A. triplinervis morphotypes, to evaluate larvicidal activity against Aedes aegypti and acute oral toxicity in Swiss albino mice (Mus musculus). The essential oils were extracted by steam dragging, identified by gas chromatography coupled to mass spectrometry, and nano-emulsions were prepared using the low energy method. Phytochemical analyses indicated the major compounds, expressed as area percentage, ß-Caryophyllene (45.93%) and Thymohydroquinone Dimethyl Ether (32.93%) in morphotype A; and Thymohydroquinone Dimethyl Ether (84.53%) was found in morphotype B. Morphotype A essential oil nano-emulsion showed a particle size of 101.400 ± 0.971 nm (polydispersity index = 0.124 ± 0.009 and zeta potential = -19.300 ± 0.787 mV). Morphotype B essential oil nano-emulsion had a particle size of 104.567 ± 0.416 nm (polydispersity index = 0.168 ± 0.016 and zeta potential = -27.700 ± 1.307 mV). Histomorphological analyses showed the presence of inflammatory cells in the liver of animals treated with morphotype A essential oil nano-emulsion (MAEON) and morphotype B essential oil nano-emulsion (MBEON). Congestion and the presence of transudate with leukocyte infiltration in the lung of animals treated with MAEON were observed. The nano-emulsions containing essential oils of A. triplinervis morphotypes showed an effective nanobiotechnological product in the chemical control of A. aegypti larvae with minimal toxicological action for non-target mammals.


Subject(s)
Aedes , Larva , Animals , Gas Chromatography-Mass Spectrometry , Insecticides , Oils, Volatile
SELECTION OF CITATIONS
SEARCH DETAIL
...